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Abstract 

Calcitonin gene-related peptide (CGRP), a potent vasodilator that mediates 

inflammatory pain, was found to co-occur in rat trigeminal ganglia neurons (TGNs) 

with 3 exocytotic soluble NSF (N-ethylmaleimide sensitive factor) attachment protein 

receptors (SNAREs) [synaptosomal-associated protein with Mr = 25 k (SNAP-25), 

syntaxin I, synaptobrevin (Sbr) isoforms] and synaptotagmin. Ca2+-dependent CGRP 

release evoked with K+-depolarisation was higher than that evoked by capsaicin or 

bradykinin from neurons containing the vanilloid receptor 1 and/or bradykinin receptor 

2. Botulinum neurotoxin (BoNT) type A cleaved SNAP-25 and inhibited release 

triggered by K+ >bradykinin >>capsaicin. Unlike BoNT/D, /B did not affect 

exocytosis although rat TGNs possess its receptor, synaptotagmin I/II, and Sbr II/III 

got proteolysed (I is resistant in rat) but, in mouse, /B additionally cleaved Sbr I and 

blocked release. Knock-down of Sbr I expression substantially reduced CGRP 

exocytosis. These novel findings implicate Sbr I in CGRP exocytosis together with 

SNAP-25. An in-depth study was performed on the feeble inhibition by /A of 

capsaicin-elicited CGRP release, as it stimulates C-fibres __ a prime target for 

attenuating nociception; their inactivation was sought using the superior membrane-

translocating properties of BoNT/E which cleaves 26 residues from SNAP-25 rather 

than the 9 by /A. Chimera EA was engineered to exploit the light chain and 

translocation domain from /E, together with the acceptor binding  from /A to overcome 

the inability of /E to interact with TGNs. Purified /EA bound synaptic vesicle protein 2 

type C  in vitro and entered the neurons because capsaicin-evoked exocytosis of CGRP 

was inhibited. Unlike /A, the longer truncation of SNAP-25 by /EA diminished its 

participation in stable SNARE complexes, unlike SNAP-25A. Prolonged elevation of 

[Ca2+]i by capsaicin, as revealed by 45Ca2+ uptake and Fluo 4-AM imaging, gives a 

persistent trigger for CGRP release from /A-treated cells. The successful targeted 

delivery of EA into nociceptive neurons and the consequential blockade of CGRP 

release, even when evoked by sustained elevation of [Ca2+]i, highlight the versatility of 

this novel chimera.  
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1.0 General introduction 



1.1 Botulinum neurotoxins  

 

1.1.1 Origin 

Clostridum botulinum is a gram-postive, anaerobic, spore-forming and rod-shaped 

bacterium which produces botulinum neurotoxin (BoNT). These are the most potent 

toxins known, causing flaccid neuromuscular paralysis. In 1817, the German physician 

Justinus Kerner described a paralytic condition caused by eating sausages, and such 

food-borne paralysis was named “botulism” (Latin for a ‘sausage-related condition’). 

The bacteria are commonly found in soil, and were first recognized and isolated in 

1895-1896 by Emile van Ermengem from home cured ham that had been implicated in 

a botulism outbreak (Ermengem, 1897). In 1944, Edward Schantz successfully cultured 

Clostridium botulinum and isolated botulinum toxin (Schantz, 1994), and, in 1949, 

Burgen's group discovered that the toxin blocks neuromuscular transmission (Burgen, 

1949). Since then, seven serologically distinct but structurally similar BoNTs serotypes 

have been idenfied (Dolly and Lawrence, 2007; Montecucco and Schiavo, 1994; 

Pellizzari et al., 1999; Popoff et al., 2001) and named A-G, according to the order of 

their discovery. Serotypes A, B, E and F are responsible for the majority of human 

botulism; BoNT/C and /D are causative agents for animal and avian botulism 

(Tsukamoto et al., 2005) and were discovered in birds and in cattle, respectively 

(Coffield et al., 1997; Davletov et al., 2005). Serotype G was isolated from soil. BoNTs 

usually occur in complexes with non-toxic proteins named haemagglutinins plus non-

toxic non-haemagglutinin (NTNH). These associated non-toxic proteins stablize the 

toxin at low pH and dissociate at neutral pH, protecting toxin moiety from proteolytic 

attack during exposure to the gastrointestinal environment [reviewed by (Humeau et al., 

2000)]. When BoNT-contaminated food reaches the small intestine, the toxin crosses 

the interstinal wall and enters the bloodstream (Simpson, 2004). Type A toxin has been 

the most widely studied and successfully used for therapeutic purposes to date. Type B 

is commercially available but higher doses are required (Davletov et al., 2005; Foran et 

al., 2003; Jankovic, 2004). 

 

1.1.2 Mechanism of action  

 These neurotoxins potently and preferentially inhibit the release of acetycholine from 

peripheral motor nerves causing flaccid neuromuscular paralysis typical of botulism 

(Dolly and Lawrence, 2007; Montecucco and Schiavo, 1994; Pellizzari et al., 1999; 
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Popoff et al., 2001). Intracellular administration of BoNTs blocks Ca+-regulated 

exocytosis of all transmitters, both from small clear synaptic vesicles (SCSVs) and 

large dense-core vesicles (LDCVs) (Bergquist et al., 2002; Foran et al., 1995; Foran et 

al., 2003; Keller and Neale, 2001; McInnes and Dolly, 1990). Each BoNT is 

synthesized as a relatively inactive single-chain protein with a molecular weight of 

~150 kDa and becomes activated upon proteolytic cleavage by bacterial endogeneous 

proteases or by trypsin in vitro to yield the binding/translocating heavy chain (HC) and 

enzymatic light chain (LC), linked through a disulphide bond and non-convalent 

interactions. The 3D crystal structures for BoNT/A and /B  have been determined 

(Lacy et al., 1998; Swaminathan and Eswaramoorthy, 2000) ( Fig. 1.1).  

BoNTs have 3 individual domains (each with a molecular mass of ~50 kDa): (1) a 

catalytic LC domain (a zinc-dependent endopeptidase); (2) a translocation domain (HN); 

(3) a binding domain (HC) composed of two subdomains: C terminal binding domain 

(HCC) and N terminal binding (HCN) (Fig. 1.1), which binding to gangliosides and high-

affinity protein acceptors (Chai et al., 2006; Jin et al., 2006). A multi-step mechanism 

of action for BoNT at the motor terminal was proposed (Black and Dolly, 1986; Dolly 

et al., 1984; Dolly et al., 1994; Humeau et al., 2000; Schiavo et al., 2000; Simpson, 

1979). These steps include: binding to ecto-acceptors on cholinergic nerve terminals; 

acceptor-mediated internalization and membrane translocation of LC; after gaining 

access into the neuronal cytosol, the metalloprotease activities of the LCs selectively 

proteolyse and disable soluble NSF (N-ethylmaleimide sensitive factor) attachment 

protein receptor (SNAREs) which mediate vesicular transmitter release. So far, 

synaptic vesicle protein 2 (SV2) has been identified as a high affinity binding 

component for BoNT/A. SV2 is an integral membrane glycoprotein, occuring in three 

well-characterized isoforms, SV2A, SV2B, and SV2C. SV2A is more widely 

distributed in the nervous system, whereas SV2C is only observed in a small number of 

neurons in a few brain areas  (Bajjalieh et al., 1994; Bajjalieh et al., 1993; Janz et al., 

1998; Janz and Sudhof, 1999). Isoforms of another synaptic protein, synaptotagmin I/II 

were found to be the putative protein acceptors for /B and /G (see later) (Dong et al., 

2003; Dong et al., 2006; Rummel et al., 2004). After binding, the toxins are 

internalized by acceptor-mediated endocytosis (Fig. 1.2 A). An intact di-chain (DC) is 

needed for translocation of LC to the cytosol where it cleaves one or two of three 

essential proteins involved in the Ca2+-regulated exocytosis machinery (Fig. 1.2 B). 
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SNAP-25 (synaptosomal associated protein with Mr = 25k) that predominantly resides 

on the plasma membrane is cleaved by BoNT/A, /C1 and /E, all at distinct sites; 

syntaxin IA/IB is also cleaved by BoNT/C1. BoNT/B,  /D, /F and /G act on 

synaptobrevin (Sbr) [also known as vesicle-associated membrane protein (VAMP)] 

isoforms I, II and III; Sbr I in rat is unusual in being resistant to type B cleavage due to 

a mutation at the fission site (Foran et al., 2003; Humeau et al., 2000; Yamasaki et al., 

1994) (Table 1.1). In neuronal exocytosis, syntaxin and sbr are anchored in plasma and 

synaptic vesicle membranes, respectively, by their C-terminal domains, whereas 

SNAP-25 is tethered to the plasma membrane via several cysteine-linked palmitoyl 

chains. The core SNARE complex is a four-α-helix bundle, where one α-helix is 

contributed each by syntaxin-1 and sbr and two α-helices by SNAP-25 (Sutton et al., 

1998). Synaptotagmin is a Ca2+ sensor and is involved in early synaptic vesicle docking 

to the presynaptic membrane via interaction with SNAP-25. Its N-terminal domain 

resides in the luman of synaptic vesicle and its C-terminal cytoplasmic region binds to 

Ca2+ (Fig. 1.3) (Littleton et al., 2001). Upon binding to Ca2+, it then facilates the late 

steps of  Ca2+-evoked synaptic vesicle fusion with the presynaptic membrane [reviewed 

by (Humeau et al., 2000)]. Truncation of the exocytotic machinery SNARE proteins by 

BoNTs pertubs the formation of SNARE complex and inhibits exocytosis (see Chapter 

5).   

 
Fig. 1.1 Structure of BoNT/A. Backbone trace of BoNT/A: LC in pink, the HN in blue, 

N-terminal (HCN, in brown) and C-terminal (HCC, in green) binding domains are shown. 

The picture was generated using Cn3D4.1 software from published structure database 

(GenBank accession No: 3BTA) (Lacy et al., 1998). 
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                                 Table 1.1 BoNTs and the substrates they cleave 

Serotype Intracellular target protein 

 

Cleavage sites in rat  

/A 

 

SNAP-25  EANQ197RATK 

/B 

 

Sbr I, II* GASQ76FETS 

(rat Sbr I is resistant:GASVFESS) 

/C1 

 

SNAP-25 

Syntaxin IA/ IB  

 

ANQR198ATKM 

DTKK254AVKY/ DTKK253AVKY 

/D 

 

Sbr I, II* 

 

RDQK61LSELD for I and II 

 

/E 

 

SNAP-25  

 

QIDR180IMEK 

/F 

 

Sbr I, II* 

 

ERDQ60KLSE for I 

ERDQ58KLSE for II 

 

/G 

 

Sbr I, II* 

 

ETSA83AKLK for I 

ETSA81AKLK for II 

*Rat and mouse Sbr III is also cleaved by BoNT/B, D, F, G 
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A 

B 

Fig. 1.2 Inhibitory action of BoNTs on transmitter release. (A) Four steps are 

involved in the intoxication: (i) the toxin heavy chain (HC, black) mediates cell-

surface binding with ganglioside and glycoprotein receptors (orange); (ii) 

acceptors-mediated internalization; (iii) translocation of light chain LC (gray) to 

the cytosol and (iv) cleavage of their repective SNARE substrates; sbr (blue), 

syntaxin 1 (red) and SNAP-25 (green) (B) The relative cleavage sites of each BoNT 

on its substrate are shown [pictures are reproduced from (Brungerb, 2005)]. 
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Fig. 1.3 SNARE complex and synaptotagmin driven exocytosis. The core SNARE 

complex is formed by four α-helices constituted by each from sbr, syntaxin and two 

from SNAP-25; synaptotagmin is a Ca2+ sensor and regulates SNARE zipping and 

vesicle fusion. Synaptotagmin has an N-terminal transmembrane region and two C-

terminal C2 domains - C2A and C2B which bind to Ca2+. Picture is adapted from  

(Munson, 2007). 
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1.2 Potential  anti-nociceptive uses of BoNTs  

 

1.2.1 Pain pathways and evidence for pain relief by BoNTs  

The symptoms of botulism suggest that BoNTs act preferentially on peripheral 

cholinergic motor nerve endings, a notion supported by many experimental findings; 

thus, the most common clinical application of these toxins is for the treatment of 

overactive muscles (voluntary and involuntary) or glands innervated by such neurons 

(Ward and Barnes, 2007). However, some patients treated for cholinergic over-activity 

disorders noted a concomitant relief of pain symptoms that was difficult to reconcile 

with a purely cholinergic block (Binder et al., 2000). Pain of various kinds (nociceptive, 

neuropathic, inflammatory) pose major medical challenges, with 21% of the worldwide 

adult population suffering from persistent pain (WHO report 2004). The experience of 

pain is due to the combined activity of distinct systems that transmit and modulate pain. 

The pain pathway is bi-directional and consists of ascending and descending pathways. 

The ascending pathways transmit information from peripheral nociceptors to higher 

levels of the central nervous system (Bloedel and McCreery, 1975). Transmission of 

pain signals from the periphery to the cortex involves signal processing within the 

spinal cord, brain stem, and forebrain (Levy et al., 2004). The descending pathway 

travel along the asending route and transfer information from central structures to 

neurons, including the dorsal horn of the spinal cord and sensory nuclei of the 

brainstem (i.e. trigeminal nuclei). The descending pathway allows the brain to 

modulate pain sensation so that the brain can either amplify or inhibit incoming pain 

signals through desending modulatory pathways (Bloedel and McCreery, 1975; Hole 

and Berge, 1981).  Recent clinical investigations have indicated that myofacial pain, 

migraine and certain types of headache seem to respond to local injection of botulinum 

toxin A-haemagglutinin complex (BoTOX) (Gupta, 2005). Additionally, the 

preparation can reduce capsaicin-induced pain [however this still remains controversial 

(see overview in Chapter 5)], and secondary hyperalgesia in a human experimental 

model of trigeminal sensitisation (Gazerani et al., 2006).  

Release of substance P (SP), a neuropeptide involved in neurogenic inflammation, is 

inhibited by various BoNT serotypes in cultured neurons from embryonic rat dorsal 

root ganglia (DRGs) (Welch et al., 2000). Exocytosis of glutamate, another 
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neurotransmitter involved in nociception in the periphery and in the dorsal horn of the 

spinal cord, was also shown be suppressed  in rat paw challenged with formalin (Cui et 

al., 2004). Some studies suggested that the mechanism of pain relief by BoNTs is due 

to peripheral desensitisation, which indirectly prevents central neuron sensitisation. 

Notablly, study examines the time course of muscle relaxation and pain relief in spastic 

and nonspastic muscle conditions, where the analgesic property has generally been 

attributed to muscular relaxation, the pain reduction by BoNT/A happens before 

muscle relaxation  and even last longer than the muscle relaxation (Aoki, 2005; Freund 

and Schwartz, 2003). 

1.2.2 Pathophysiology of migraine and evidence of involvement of neuropeptides 

The pathogenesis of migraine headache involves three major constituents: the cranial 

blood vessels, the trigeminal innervation of these vessels, and the reflex connection of 

the trigeminovascular system in the cranial parasympathetic outflow; so far, there is no 

in vivo model systems that mimic all aspects of the migraine attack (Goadsby et al., 

2002; Mehrotra et al., 2008). In support of particular roles for vasoactive neuropeptides 

such as calcitonin gene-related peptide (CGRP) and SP, antagonists for these peptides 

or their receptors were shown to reduce pain. CGRP antagonists, such as CGRP8-37, 

attenuated pain upon injection into the dorsal horn (Bird et al., 2006); another 

antagonist of the α type CGRP receptor (BIBN4096BS) reduces vasodilation (Salvatore 

et al., 2008). Infusion of CGRP produced a migraine-like headache (Olesen and Lipton, 

2004) and baseline CGRP levels were increased in migraineurs (Fusayasu et al., 2007). 

Inhibition of CGRP release or antagonism of CGRP receptors could be a viable 

therapeutic target for the pharmacological treatment of migraine (Edvinsson, 2004; 

Mehrotra et al., 2008). However, the short-lived effect of these antagonists is 

disadvantagous for use in therapy; the half-life for the two aforementioned antagonists 

is only hundreds of minutes (Edvinsson, 2007; Salvatore et al., 2008). With BOTOX® 

being found to be effective in the treatment of chronic pain, especially chronic 

headaches, it offers several advantages of being safe, tolerable and effective in 

prevention of migraines resistant to other drugs (Blumenfeld, 2003; Farinelli et al., 

2006; Menezes et al., 2007; Suzuki et al., 2007). One injection works for three months, 

rather than patients taking pills every day and frequently becoming intolerant or 

refractory. 
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To better understand release mechanisms of pain mediators and, thereby, exploit the 

advantages of using toxin therapy to attenuate pain symptoms (e.g. migraine), there is 

an urgent need for studies on the interaction between BoNTs and pain-sensing neurons.  

 

1.3 Peripheral sensory neurons: pain mediators and trigger factors 

A number of sensory nerve types are involved in propagating pain (Woolf, 2004; 

Woolf and Ma, 2007).  Activation of the trigeminal nerve is involved in migraine and 

cluster headache which are very prevalent (~16% of adults). 

 

1.3.1 Trigeminal ganglion neurons (TGNs) 

 Stimulation of the trigeminal nerve, the largest of the cranial nerves, triggers release of 

CGRP and SP from sensory neurons in trigeminal ganglia (TG), a migraine pain relay 

centre. Release of CGRP and SP induces vasodilation and mast cell degranulation; this 

further increases the levels of inflammatory agents which, in turn, enhance the 

synthesis and release of these peptides (Durham and Cady, 2004). Cell bodies of the 

trigeminal nerve reside in the trigeminal ganglion, which is located on the cerebral 

surface of the sphenoid bone in the middle cranial fossa. As its name suggests, it has 

three major branches: ophthalmic, maxillary and mandibular, and contains the cells of 

origin of most of the sensory fibers of the trigeminal nerve. The 3 branches provide 

most of nociceptive input from the cerebrovasculature and craniofacial region. 

Nociceptors are free nerve endings enriched with receptors sensitive to mechanical 

stress, extreme heat or cold, and noxious chemicals. Fig.1.4 shows the structure of 

trigeminal ganglion and surroundings. The central processes enter the brain at the level 

of the pons, conveying pain and temperature, descend into the brain stem and comprise 

the SPINAL TRACT V.  

According to the size of neurons and type of transmitters released, sensory neurons are 

divided into several groups: fast-conducting, myelinated A-β fibres mediate the 

synaptic release of transmitters such as excitatory amino acids from small clear 

synaptic vesicles (SCSVs) which cause cortical spreading depression, neuronal hyper-

excitability and central sensitization; on the other hand, the slow transfer of signals via 

the A-δ and unmyelinated C fibres elicit the secretion of CGRP, SP, neurokinin A 

(Silberstein and Aoki, 2003). Isolectin B4 (IB4), an alpha-D-galactose-binding lectin 

isolated from Griffonia (Bandeiraea) simplicifolia, has been used to label primary 

sensory afferent terminals of small-diameter TGNs in vivo. C-fibers can be divided into 
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two groups based on growth factor dependency and IB4 binding. IB4-negative 

nociceptors have been proposed to contribute to inflammatory pain, and IB4-positive 

neurons are sensitized to VR1 ligands during inflammation and, thus, IB4-positive C-

fiber neurons may contribute to inflammatory hyperalgesia (Breese et al., 2005). 

 

 
Fig. 1.4  Trigeminal ganglion dissection guidance 

Picture reproduced from http://medinfo.ufl.edu/year1/trigem/anatomy.html

 

1.3.2 CGRP, SP and their receptors 

CGRP is a 37-amino acid neuropeptide produced by tissue-specific alternative 

processing of the primary RNA transcripts of the calcitonin gene; it has two isoforms: α 

CGRP (or CGRP-I) and β CGRP (or CGRP-II). α and β differ by one amino acid in rats 

and three residues in humans (Poyner et al., 2002) (Table 1.2). α CGRP is present in 

sensory neurons whereas β CGRP mainly occurs in the enteric nervous system. The 

level of CGRP in the cerebrospinal fluid becomes elevated significantly during the 

painful phase of migraine (Goadsby and Edvinsson, 1993). Also, release of CGRP in 

the periphery is a reliable marker for neurogenic inflammation; the time course of 

CGRP plasma levels parallels headache intensity and successful treatment of such 

attacks abort both the associated pain and CGRP release (Goadsby and Edvinsson, 

1993). 

 

In the migraine pathophysiology, release of CGRP may be through several putative 

pathways of vascular hyper-reactivity: NO (nitric oxide) released from endothelial cells  
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not only has its own vascular effects but up-regulates CGRP gene expression in rat 

trigeminal ganglia (Fig. 1.5). While the primary dysfunction in brain causes CGRP-

dependent vasodilation; cortical spreading depression (CSD) could be the initial trigger 

for CGRP release due to activation of the trigeminovascular system (Doods et al., 

2007).    

There are two types of CGRP receptors identified so far: CGRP1 and CGRP2; isofrom 

1 shows preference for binding to the CGRP antagonist: CGRP8-37. CGRP receptors 

are hetero-dimers comprising GPCR (G-protein coupled receptor), CLR (calcitonin 

receptor-like receptor), an accessory protein, RAMP1 (receptor activity-modifying 

protein 1), and a receptor component protein (RCP) (Fig. 1.6); CGRP receptors are 

distributed on the postsynaptic and presynaptic membranes. CGRP initially released 

from trigeminal ganglion causes subsequent release of inflammatory cytokines from 

mast cells which, in turn, induce more CGRP release by activation of a positive feed 

back loop (Durham and Russo, 2003). Binding of CGRP to its receptor causes 

activation of multiple signalling pathways (Fig. 1.7).  

 

SP is a 11-amino acid peptide (H-Arg-Pro-Lys-Pro-Gln-Gln-Phe-Phe-Gly-Leu-Met-

NH )2 , and is a member the tachykinin family that also includes neurokinin A (NK-A), 

neurokinin B (NK-B), neuropeptide K (NP-K), and neuropeptide-  (NP- ). SP is 

derived from tissue-specific alternative splicing of the pre-protachykinin I gene and is 

produced almost exclusively in neuronal tissues. 

The SP receptor is a neurokinin A receptor which also belongs to the tachykinin 

receptor sub-family of GPCR; its activation leads to the mobilization of intracellular 

Ca2+ and elevation of cAMP levels (Mitsuhashi et al., 1992), and induces changes in 

the subsequent signalling as described for CGRP (Fig. 1.7). 

CGRP and SP are released from peripheral nerve terminals in response to an 

inflammatory stimulus, such as local application of capsaicin or bradykinin (see 1.3.3). 

In situ, nearly 80% of SP-positive trigeminal (and other sensory) ganglion neurons 

contain CGRP, which indicates both peptides are largely co-expressed; However, 

CGRP is also found in some C-fibers nociceptors that lack SP. Both peptides serve as 

the major mediators of inflammatory pain, and notably, they are released from LDCVs 

at sites away from the active zones where most SCSVs exocytosis occurs (Kummer, 
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1992). This more diffuse type of secretion affords communication with neighbouring 

cells over wide areas.  Accordingly, CGRP and SP cause dilation of intracranial blood 

vessels and transmit nociceptive signals from this vasculature to the central nervous 

system though CGRP was significantly more potent than SP as a cerebrovascular 

dilator (McCulloch et al., 1986).  

 

Table 1.2   Peptide sequences of α and β isoforms of CGRP in rat and human 

h  CGRP A C D T A T C V T H R L A G L L S R S G G V V K N N

  

F V P T N V G S K A F 

h  CGRP A C N T A T C V T H R L A G L L S R S G G M V K S N

  

F V P T N V G S K A F 

r  CGRP S C N T A T C V T H R L A G L L S R S G G V V K D N

  

F V P T N V G S E A F 

r  CGRP S C N T A T C V T H R L A G L L S R S G G V V K D N

  

F V P T N V G S K A F 

 

Non-conserved amino acids between the two isoforms of each species are underlied. h, 

human; r, rat. 
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Fig. 1.5 CGRP and SP are potent vasodilators in nociception of migraine and other 

inflammatory based pain. While triggers for migraine pathophysiology are currently 

unknown, endothelial NO (nitric oxide) is responsible for the initial vasodilation. NO 

production coincides with CGRP release from trigeminal ganglia implicating CGRP as 

a trigger of migraine through two possible mechanisms; one possibility is that released 

CGRP binds to mast cell via its receptor causing mast cell degranulation and 

subsequent release of other inflammatory agents. Alternatively, CGRP may bind the 

smooth muscle of cerebral artery causing its relaxation and increased blood flow. 

Additionally, CGRP binds the secondary hypothalamus neurons causing painful 

impulse transmission. Binding of CGRP to its receptor is blocked by an antagonist of 

the α type CGRP receptor (BIBN) Picture is reproduced from (Kapoor, 2004). 
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Fig. 1.6 The CGRP receptor. This is a complex proposed to comprise a ligand-binding 

protein (CRLR) which is an accessory protein for trafficking and pharmacology, a 

receptor activity-modifying protein 1 (RAMP1), and receptor component protein (RCP) 

which is a member of a multi-protein complex required for GPCR signal transduction. 

CGRP receptor is a G-protein coupled receptor, its subunit (GαS, G-protein α subunit) 

activates the adenylyl cyclase and then converts ATP to cyclic-AMP (cAMP), followed 

by activation of multiple signalling pathways, as shown in Fig. 1.7. Picture is 

reproduced from (Prado et al., 2002).  
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Fig. 1.7 Model for CGRP receptor function and its activation of signalling pathways.   

Left panel shows endothelium-independent vasodilatation in response to CGRP. 

Activation of CGRP receptors on smooth muscle cells is coupled to production of 

cAMP by adenylate cyclase. cAMP then binds to the regulatory subunits of PKA 

leading to dissociation of the associated catalytic subunits and phosphorylation of 

numerous substrates, opening K+ channels and activating Ca2+ sequestration 

mechanisms causing smooth muscle relaxation. Right panel shows endothelium-

dependent vasodilation response to CGRP. It interacts with receptors on endothelial 

cells and stimulates production of NO. This is mediated via cAMP accumulation, 

although a direct effect of PKA on endothelial NO synthase (eNOS) is yet to be fully 

characterized. Diffusion of NO into adjacent smooth muscle cells, activates guanylate 

cyclase, leading to muscle relaxation. [Picture is adapted from (Brain and Grant, 

2004)].  

 
 

 

. 
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1.3.3 Capsaicin and bradykinin  

There are subpopulations of nociceptive neurons in TG that are selectively stimulated 

by capsaicin and/or bradykinin. Capsaicin (chemical structure of carbon backbone and 

functional groups are shown in Fig. 1.8 A) from chilli peppers is well known as a C-

fibre specific activator that causes an inward currents and produces pain by acting on 

the vanilloid receptor type 1 (VR1, also known as TRPV1), a nonselective cation 

channel that prefers Ca2+ over Na+ and an integrator of inflammatory pain pathways,  

which is located mainly on the C-fibres (Caterina et al., 1997; Tominaga et al., 1998). 

VR1 positive neurons are recognised as nociceptive neurons because they are activated 

by three different stimuli — capsaicin, heat (>43°C) or protons (acidification) — that 

are known to cause pain in vivo (Caterina et al., 1997; Tominaga et al., 1998) (Fig. 1.8 

B). Recently, researchers proposed a VR1 pore dilation model. A time- and 

concentration-dependent change in ionic (i.e. Ca2+) permeability following prolonged 

exposure to capsaicin was found with VR1 channels. The prolonged exposure increases 

the permeability of the VR1 channel pore (Bautista and Julius, 2008; Chung, 2008). 

Capsaicin-responsive nerves may be stimulated to release pre-stored pro-inflammatory 

neuropeptides. The neuropeptides released from VR1-positive nerves such as CGRP 

and SP cause mast cells degranulation, thereby, liberating histamine which, in turn, 

stimulates VR1 positive nerves to release more CGRP and SP (Szallasi and Blumberg, 

1999) (Fig. 1.8 C). 

Bradykinin (Arg-Pro-Pro-Gly-Phe-Ser-Pro-Phe-Arg), another nociceptive neuronal 

marker, activates sensory neurons by acting on the G-protein-coupled bradykinin type 

2 receptor (BR2), causing elevation of [Ca2+]i and inducing transmitter release (Chuang 

et al., 2001), which in turn, cause acute sensation of pain (Steranka et al., 1988).  
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Fig. 1.8 Capsaicin chemical structure and its receptor VR1. (A) Capsaicin structure; 

(B) VR1 has six transmembrane (TM) domains and a short, pore-forming hydrophobic 

stretch between the fifth and sixth TM domains (Cortright and Szallasi, 2004; Ferrer-

Montiel et al., 2004); the channel pore has selectivity: Ca2+ >Mg2+>K+≈ Na+; initial 

open state of VR1 shows low permeability to large cations. Polonged exposure to 

agonists increases the pore size, leading to enhanced permeability of the channel to 

large cations [reviewed by (Bautista and Julius, 2008)].  (C) Schematic illustration of 

the role of peripheral vanilloid-sensitive nerve endings in evoking neurogenic 

inflammatory and allergic-hypersensitivity reactions (Szallasi and Blumberg, 1999). 
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1.4 Project aims and objectives 

For the purpose of deciphering a molecular basis for the anti-nociceptive effects of 

BoNTs, an in vitro model was needed. Two types of sensory neurons, TGNs and DRGs, 

were chosen because these can be easily dissected, cultured and both are important in 

pain-transduction; also, TGNs are especially well known as a migraine pain-relay 

centre (see section 1.3.1).  

The first objective, after successfully establishing these sensory neuronal systems in 

vitro, was to examine the location of their nociceptive neuronal markers (VR1, BR2 

and IB4 binding) in relation to pain-related peptides (i.e. CGRP or SP), by conventional 

or confocal microscopy in either phase-contrast or fluorescent mode. It was then 

necessary to demonstrate not only the presence of the core exocytotic machinery i.e. 

SNAREs (SNAP-25 and syntaxin or Sbr isoforms), and their associated proteins 

(synaptotagmin variants) but their co-occurence or co-localization with pain-related 

peptides. This should be achieved by separation of vesicles from these cultured sensory 

neurons allowing investigation of pain signalling pathways through immuno-analysis 

of their peptide content, SNAREs or related proteins. The presence of these BoNT 

substrates would imply the potential ability of various BoNTs in inhibiting the release 

of pain peptides.  

The application of robust enzyme immuno-assays would allow the quantification of 

Ca2+-dependent release of pain-peptides from these sensory neurons upon stimulation 

with various secretagogues (i.e. capsaicin or bradykinin with or without Ca2+) or by 

membrane depolarisation (via manipulation of the external [K+] in the presence or 

absence of Ca2+). Dependence of these exocytotic events on SNARE function should 

be ascertained by designing experiments utilising the 5 serotypes of natural BoNT (/A, 

/B, /C, /D, /E), all of which cleave their respective intracellular SNAREs at distinct 

sites. Blockade of the release of pain-mediators upon BoNT intoxication would not 

only demonstrate the role of SNAREs but allow the identification of particular SNARE 

isoforms. 

A major objective of this project was to address the potential role of Sbr I in CGRP 

release. As no toxin can cleave Sbr I selectively, it was necessary to employ gene 

knock-down experiments using shRNA expressed by lentiviral particles, previously 

demonstrated to easily infect non-dividing cells. Characterisation of the intact SNARE 

complexes and resolution of the activity of truncated-SNAREs in mediating exocytosis 

was a crucial objective of this work. Experiments employing immuno-precipitation, 
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vesicle immuno-isolation and 2-dimensional gel electrophorisis techniques allowed the 

characterisation of particular SNARE complexes. Because CGRP resides in LDCVs, 

the presence of isoforms of SNARE was largely unknown, the use of a particular 

variant by various neurons should raise functional implications for other cells 

previously unrecognised (i.e. Sbr II was shown to occur predominantly in SCSVs 

whereas Sbr I was found to be required for mediating CGRP release, see Chapter 4). 

Another experimental strategy of this work was to employ chimeric technology 

whereby various hybrid BoNTs were created by inter-changing binding domains 

between various serotypes. This approach would allow the introduction of different 

BoNT proteases into neurons previously insensitive to that particular serotype (i.e. 

chimeric EA toxin was engineered by substitution the binding domain of BoNT/E, 

which is unable to bind to neurons due to lack of its acceptor, by its counterpart from 

BoNT/A which can bind, see Chapter 5). Elucidation of the functionality of these 

chimeras and comparison with the parental toxins in different sensory models (each 

with dissimilar sensitivities to various BoNTs) should yield insights into, firstly, the 

functional domains of BoNT and, secondly, steps of transmitter release which 

previously could not be perturbed by their parental toxins in sensory systems (i.e. 

perticipation of SNAP-25 truncated by toxins in the formation of SDS-resistant 

SNARE complex). Only /A- but not chimera EA-truncated SNAP-25 was found to 

occur in the complex; and Ca2+-reversibility of inhibition of exocytosis was found to be 

much greater after treatment with BoNT/A than chimera EA, see Chapter 5).  

More in-depth studies were carried out in order to investigate the relationships between 

capsaicin-induced [Ca2+]i elevation and CGRP release rate; the observed prolonged 

elevation of [Ca2+]i elicited by capsaicin, revealed by 45Ca2+ uptake and confocal 

imaging using Fluo 4-AM, could overcome BoNT/A inhibition. Most importantly, 

these chimeric toxins could also have improved pharmacological outcomes over their 

parents.  
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2.0 Materials and Methods 
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2.1 Materials 

Suppliers’ addresses are listed in the Appendix. 

 

2.1.1 Cell culture and related reagents 

Leibowitz’s L15, Dulbecco’s modified Eagle’s Medium (DMEM) and Ham’s F12 

culture media, foetal bovine serum, Ca2+- and Mg2+-free Hanks’ balanced salt solution 

(CMF-HBSS), Dulbecco’s phosphate buffered saline (lacking Mg2+ and Ca2+), 

antibiotics and mouse nerve growth factor (NGF-2.5S or 7S) and GlutMax I were 

purchased from GibcoBRL. Dispase II, collagenase I and DNase I were supplied by 

Roche Inc. Basal Eagle’s Medium, Cytosine-β-D-arabinofuranoside (Ara-C), capsaicin, 

bradykinin, protease inhibitor cocktail, poly-L-lysine and laminin were bought from 

Sigma. 

 

2.1.2 Antibodies 

Table 2.1 List of antibodies 

Dilution 
 

Primary antibodies 
and catalogue 
numbers 

Monoclonal (Mab) or 
polyclonal, raised in 
species indicated and 
Immunogen epitope  

Vendor 

*IF *WB 

SNAP-25 
Cat. No. SMI81 

Mab, 
binding to the amino-
terminal of the C-terminal 
peptide 

Sternberger 
Monoclonal
s, Inc. 

1:500 1:1000 

SNAP-23 
Cat. No. 111 202 

Rabbit,  
synthetic peptide 
DRIDIANARAKKLIDS 
(aa 196-211 in human) 

Synaptic 
Systems 

1:1000 1:1000 

Syntaxin I 
Cat. No. S0664 

Mab Sigma 1:500 1:2000 

Syntaxin II 
Cat. No. 110 022 

Rabbit, cytoplasmic 
domain of rat syntaxin 2 
(aa 1 - 265). 

Synaptic 
Systems 

1:1000 1:1000 

Syntaxin III 
Cat. No. 110 032 

Rabbit, cytoplasmic 
domain of rat syntaxin 3 
(aa 1 - 260). 

Synaptic 
Systems 

1:1000 1:1000 

Sbr I 
Cat. No. 104 002 

Rabbit, synthetic peptide 
SAPAQPPAEGTEG (aa 2 
- 14 in rat synaptobrevin 1)

Synaptic 
Systems 

1:1000 1:1000 

Sbr II 
Cat. No. 104 202 

Rabbit, synthetic peptide 
SATAATVPPAAPAGEG 
(aa 2 - 17 in rat 
synaptobrevin 2) 

Synaptic 
Systems 

1:1000 1:1000 
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Sbr II (Cl69.1) 
Cat. No.104 211 

Mab, synthetic peptide 
SATAATVPPAAPAGEG 
(aa 2 - 17 in rat 
synaptobrevin 2) 

Synaptic 
Systems 

1:1000 1:1000 

Sbr I/II/III 
(anti-HV62) 

Guinea pig, a synthetic 
peptide corresponding to 
residues 33–94 of. human 
synaptobrevin-2 

Self-
generated  
(Foran et 
al., 2003) 

 1:400 

Synaptotag-min 
I/II 
Cat. No. SC-
12466 

Goat, an internal region of 
Synaptotagmin I 

Santa Cruz 
Biotechnolo
gy 

1:100  

Syt-Ecto (Cl604.2) 
Cat. No. 105 311C
3  

Mab, synthetic peptide (aa 
1 - 19 of rat synaptotagmin 
1)   

Synaptic 
Systems 

1:100  

SV2A 
Cat. No. 119 002 

Rabbit, synthetic peptide 
EEGFRDRAAFIRGAKD 
(aa 2 - 17 in human) 

Synaptic 
Systems 

1:1000 1:1000 

SV2B 
Cat. No. 119 102  

Rabbit, synthetic peptide 
DDYRYRDNYEGYAPN
D (aa 2 - 17 in rat) 

Synaptic 
Systems 

1:1000 1:1000 

SV2C 
Cat. No. SC-
11944

Goat, N-terminus of SV2C 
of rat origin 

Santa Cruz 
Biotechnolo
gy 

1:100 1:10000 

CGRP 
Cat. No. C8198 

Rabbit, synthetic CGRP 
(rat) 

Sigma 1:500  

CGRP (CD8) 
Cat. No. C9487 

Mab, synthetic peptide of 
C-terminal αCGRP (rat) 

Sigma 1:500  

SP 
Cat. No. AB14184 
 

Mab, Synthetic peptide: 
RPRPQQFFGLM, 
corresponding to amino 
acids 1-11 of Human 
Substance P. 

Abcam 1:1000  

VR1 
Cat. No. RA10110 
 

Rabbit, 
RASLDSEESESPPQENS
C 

Neuromics 1:1000  

VR1 
Cat. No. AB10295 
 

Guinea pig, synthetic 
peptide: 
YTGSLKPEDAEVFKDS
MVPGEK, corresponding 
to C terminal amino acids 
817-838 of Rat Vanilloid 
Receptor 1. 

Chemicon 1:1000  

BR2 
Cat. No. RDI-
BRDYKRabm  
    

Mab, peptide 350-364 C 
terminal of human B2 
Bradykinin Receptor 

RDI 
Division of 
Fitzgerald 
Industries 
Intl   

1:500  

NF-200 
Cat. No. N-0142   

Mab, the carboxyterminal 
tail segment of 

Sigma 1:500  
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enzymatically 
dephosphorylated pig 
neurofilament H-subunit  

BoNT/A Rabbit Allergan. 
Inc. 

 1:5000 

LC/E Rabbit Allergan. 
Inc. 

 1:15000 

*IF, immunofluorescence staining; WB, Western blotting  

Rabbit non-immune IgG was bought from Sigma; anti-species secondary antibodies 

fluorescently-labelled or conjugated to horseradish peroxidase were obtained from 

Invitrogen or Jackson Immuno-Research, respectively.   

 

2.1.3 Natural BoNTs 

Homogeneous, fully-active di-chain BoNT/A was obtained from Dr. B. DasGupta 

(Department of Food Microbiology and Toxicology, University of Wisconsin-Madison, 

53706, USA.).  Metabiologics Inc. supplied BoNT/B which contained some single 

chain; it was converted (> 95%) to the di-chain form by nicking with Trypzean (200 µg 

of toxin and 2 µg of enzyme in 0.2 ml 50 mM HEPES/50 mM NaCl, pH 7.4) at 27°C 

for 40 minutes, followed by addition of 20 µg of soyabean trypsin inhibitor.  BoNT/C1 

and /D were obtained from Metabiologics Inc. A highly purified single chain (SC) of 

natural BoNT/E from Metabiologics Inc was nicked to the DC form (>95%) with 

Trypzean (8µg/mg BoNT) for 40 minutes at 27ºC. 

 

2.1.4 Animals 

Wistar rats were bought from Bioresources Unit of Trinity College; Tyler’s Ordinary 

(TO) mice and Sprague Dawley rats were bred in an approved Bioresources Unit at 

Dublin City University (DCU).  

 

2.1.5 EIA assay reagents  

CGRP and SP enzyme immuno-assay (EIA) kit were bought from SPI-BIO. The EIA 

kit for rat vasoactive intestinal peptide (VIP) (EK-064-16) and neuropeptide Y (NPY) 

(EK-049-03) were purchased from PHOENIX PHARMACEUTICALS, INC. The 

serotonin EIA kit (17-EA602-96) was obtained from ALPCO DIAGNOSTICS.

 

2.1.6 ShRNA reagents for knock down of Sbr I gene expression 

ShRNA lentiviral transduction particles were bought from Sigma Aldrich. 
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2.1.7 Other reagents 

Enhanced chemiluminescence (ECL) reagents were from Amersham or Millipore. 

Bicinchoninic acid (BCA) protein assay kit was bought from Pierce. Precast Bis-Tris 

gels, 20 x MOPs running buffer were purchased from Invitrogen. Trypzean, trypsin 

inhibitor, protein A agarose, 6'-diamidino-2-phenylindole (DAPI), isolectin B4-FITC 

and Coomassie Brilliant Blue G 250, trifloroacetic acid (TFA), and acetic acid were 

supplied by Sigma. Thrombin was bought from Novagen. Dolethal was prescribed by 

the Biosources Unit of Trinity College. Fluo 4-AM was purchased from Molecular 

Probes (Invitrogen).  Gangliosides mixture contained ~18% GM1, 55% GD1a, 15% 

GD1b, 10% GT1b and 2% other gangliosides extracted from bovine gray matter, and an 

aminopeptidase N inhibitor were supplied by Calbiochem.   

 

2.2 Procedures for isolation and culture of neurons 

 

2.2.1 Animals, anesthesia and dissection setup 

Postnatal day 5 (P5) Wistar or P3-5 Sprague Dawley rats or P5 TO mice were deeply-

anesthetized with intraperitoneal injection of Dolethal (50 mg/kg body wt). Heads were 

wiped with 70% ethanol, decapitated, and kept on ice until surgery. Dissection of TGs, 

DRGs and CGNs were performed inside an open-front laminar hood; working surface 

and all instruments including fine forceps, spring scissors, fine iris scissors were 

cleaned and sterilized by 70% ethanol to reduce the likehood of contamination. All 

dissection procedures were performed in the Bioresources Unit at Dublin City 

University (DCU).  

 

2.2.2 TGs dissection, dissociation and culture 

The procedures of (Eckert et al., 1997) were used with a number of modifications. The 

location of TGs is shown in Fig. 1.4 and 2.1.  After removal of skin from the skull, the 

brain and both optic nerves were removed to expose the TGs. The three main branches 

were cut and the connective tissue removed to release the TGs.  

The tissue was placed in ice-cold L15 medium, washed twice in ice-cold sterile Ca2+ 

and Ca2+- Mg2+- free Hanks’ balanced salt solution (CMF-HBSS) before centrifugation 

at 170 g for 1 minute. After chopping into small pieces and passing through L15 

medium precoated 10 ml Falcon pippetes, the tissue was incubated at 37°C for 30 
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minutes with shaking in 1:1 mixture of CMF-HBSS containing 2.4 U/ml dispase II and 

1 mg/ml collagenase I.  The suspension was then gently triturated through L15 medium 

precoated 10 ml serological pipetts until cloudy, before adding 1 mg/ml DNase I for 15 

minutes.  Following centrifugation at 170 g for 5 minutes, the pellet was resuspended 

and washed three times in culture medium [Ham’s F12 solution or DMEM containing 

10% (v/v) heat-inactivated foetal bovine serum, 100 U/ml penicillin, and 100 µg/ml 

streptomycin]. Cells were seeded at ~3x106 cells/well onto poly-L-lysine (0.1 mg/ml) 

and laminin (20 µg/ml) coated 24-well plates in F12 supplemented with 2.5 or 7s NGF 

(50 ng/ml) and maintained in a CO2 incubator at 37°C. After 24 hours and every other 

day thereafter, the culture supernatant was replaced with medium containing an anti-

mitotic agent, Ara-C (10µM).  

 

2.2.3 DRGs: dissection and culture of their neurons 

DRGs were dissected from P5 rats or mice. The locations of DRGs are shown in Fig. 

2.2. After opening the spine, the spinal cord was exposed and pushed back; ganglia 

were snipped, lifted and freed after cutting the connections. 

DRGs were washed, dissociated as for TGNs (above) and cultured at density 106/well 

in 24-well plate in DMEM containing 10% (v/v) foetal bovine serum, 100 U/ml 

penicillin, 100 µg/ml streptomycin and 50 ng/ml 2.5s NGF. Ara-C (10 µM) was added 

from day 1 to 5 in culture; medium was exchanged every other day.  
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Fig. 2.1 Location of trigeminal ganglia (tg, double arrow) in rat cranial cavity: on, 

optic nerves; olf, olfactory bulb. The three trigeminal branches are labelled at the 

location to be severed for removal of the ganglia: 1, ophthalmic; 2, maxillary; 3, 

mandibular; 4, fifth cranial nerve. Picture adaped from (Malin et al., 2007).  

 

 

 
Fig. 2.2. Location of DRGs. The location of the ganglia are pointed with arrows. Pairs 

of DRGs reside at cervical, thoracic, lumbar and sacral vertebral levels. Picture 

adapted from (Malin et al., 2007). 
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2.2.4 Culturing of cerebellar granule neurons (CGNs)  

Procedures for isolation and culturing CGNs were adapted from (Foran et al., 2003). 

Briefly, cerebella were removed from 5-8 day-old rats and enzymetically digested 

using 1:1 mixture of trypsin-EDTA in Dulbecco’s phosphate buffered saline (lacking 

Mg2+ and Ca2+) (7.5 ml each) for 20 min at 37°C. Cells were collected by 

centrifugation at 170 g for 5 minutes and resuspended in culture medium at 1×106/ml in 

basal Eagle's medium containing 10 mM HEPES-NaOH, pH 7.3, 19.6 mM KCl, 9.4 mM 

D-glucose, 0.7 mM CaCl2, 0.4 mM MgSO4, and 0.25 mM NaH2PO4; 1x N2 supplement, 

1 mM GlutMax I (contains the dipeptide L-alanyl-L-glutamine which is only removed 

from the medium by cell metabolism; there is no build-up of toxic metabolites due to 

spontaneous breakdown); 60 U/ml penicillin, 60 µg/ml streptomycin, and 2% (v/v) 

horse dialyzed serum were subsequently added. Cells were seeded at density ~5x106 in 

24 well plates onto poly-L-lysine (0.1 mg/ml)-coated 24-well plates and Ara-C (40µM) 

was added after culturing for 20-24 hours. Neurons were maintained by replacement 

every 7-10 days with freshly-prepared medium.  

 

2.3 Cytochemical staining and microscopic recording of images 

TGNs cultured on poly-L-lysine and laminin coated coverslips were washed three 

times with Dulbecco’s phosphate buffer saline (lacking Mg2+and Ca2+) then fixed for 

20 minutes with 3.7% paraformaldehyde at room temperature in the latter buffer. The 

cells were then washed with PBS three times, followed by permeabilization for 5 

minutes with 0.2% Triton X-100 in PBS before blocking with 1% bovine serum 

albumin (BSA) in PBS for 1 hour.  Primary antibodies were applied in the same 

solution and left overnight at 4ºC; after extensive washing, fluorescently-conjugated 

secondary antibodies were added for 1 hour at room temperature. Fluorescent labelling 

of IB4–binding cells was performed as detailed by (Stucky et al., 2002). Briefly, rat 

cultured TGNs were fixed by 3.7% paraformaldehyde in CMF-PBS for 20 minutes, 

followed by rinsing 3 times with PBS. Staining was performed with 4 µg/ml FITC-IB4, 

in 0.1 M phosphate buffer (contains 84 ml 0.2 M Na2HPO4 mix with 216 ml 0.2 M 

NaH2PO4 and add H20 to 600 ml, pH 7.2), 0.1 mM CaCl2, 0.1 mM MgCl2, 0.1 mM 

MnCl2 for 1 hour at room temperature. In some cases, counter-staining of nuclei was 

carried out with DAPI (1 µg/ml in water) added before the final wash. 

Immuno-fluorescent pictures were taken with an inverted confocal (Leica Dmire 2) or 

an Olympus IX71 microscope equipped with a CCD camera. Images were analysed 
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using Leica confocal software and Image-Pro Plus 5.1, respectively. The omission of 

primary antibody from the fluorescence staining gave the background for secondary 

antibody; the signal intensity above this was taken as positive reactivity. 

 

2.4 Quantitation of neurotransmitters release and/or total cellular content 

 

2.4.1 Basal and stimulated release  

At 7 days in vitro (DIV), medium was gently aspirated from the TGNs or DRGs, 0.5 

ml of basal release buffer (BR-HBS, mM; 22.5 HEPES, 135 NaCl, 3.5 KCl, 1 MgCl2, 

2.5 CaCl2, 3.3 glucose, and 0.1% BSA, pH 7.4) was added into each well, followed by 

30 minutes incubation at 37°C. The solution bathing the cells was briefly centrifuged at 

4°C and the supernatants stored at -20°C until subjected to EIA. Ca2+-dependent 

release stimulated with 60 mM KCl in HBS (isotonically balanced with NaCl) or 

various concentrations of KCl (isotonically balanced with NaCl) as indicated in figure 

legends was performed in the same way. For stimulation with capsaicin or bradykinin, 

stocks (10 mM) were prepared in ethanol or dimethyl sulphoxide, respectively, and 

further diluted in BR-HBS to reach the required concentrations. In some cases, the final 

concentration of vehicle was kept at 0.1%; this was also included in BR-HBS when 

measuring basal efflux. Quantitation of Ca2+-independent basal release and that evoked 

by K+, capsaicin or bradykinin was carried out as above except for Ca2+ being replaced 

by 2 mM EGTA. The values obtained for each were subtracted from the requisite totals 

to yield the Ca2+-dependent components; the latter figure minus the basal value yielded 

the Ca2+-dependent evoked release; expression of the evoked release relative to that for 

basal efflux gave the increment for each stimulus. Intracellular total content per well 

was determined on randomly selected wells for each culture preparation. Briefly, 500 

µl of 2 M acetic acid/ 0.1% TFA were added into each well, cells are scraped off and 

lysed by freeze/thaw three times followed by high-speed vacuum evaporation. Before 

EIA assay, 500 µl of EIA buffer was added to resuspend the dried pellets; samples 

from each well were kept in -20°C prior to assay of neuropeptides. When EIA assay 

was performed (see below), no degradation of peptide was observed because addition 

of the aminopeptidase N inhibitor (1 mM final concentration) did not make any 

difference. 

 

2.4.2 Enzyme immuno-assay (EIA) of neuropeptides  
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2.4.2.1 CGRP 

This EIA was based on a double-antibody sandwich technique that permits 

measurement of CGRP within the range of 1-500 pg/ml. The wells of the 96-well 

plates supplied with the kits were coated with a Mab specific for CGRP. This antibody 

binds any CGRP introduced in the wells (samples or standards supplied with the kits). 

An acetylcholinesterase (AChE)-Fab conjugate (anti-CGRP AChE tracer) which binds 

selectively to a different epitope on the CGRP molecule was also added to the wells. 

This allowed the two antibodies to form a sandwich by binding on different parts of the 

CGRP molecule, which remained immobilised on the plate; the excess reagents are 

washed away. The concentration of the CGRP was then determined by measuring the 

enzymatic acitivity of the AChE using Ellman's reagent, which contains 

acetylthiocholine as the substrate. The final product of the enzymatic reaction, 5-thio-2-

nitrobenzoic acid, is bright yellow and can be read at 405-420 nm. The intensity of the 

yellow colour, which was determined spectrophotometrically, is proportional to the 

amount of the CGRP present in the well.

For determining the amounts of CGRP released, 0.1 ml of sample or standard  was 

added to 96-well plates followed by 0.1 ml of CGRP tracer solution, and incubated at 

4ºC overnight. After plates were washed with buffer supplied in the kits for 5 times, 

Ellman's reagent was added and incubated in the dark at room temperature until the 

mixture turned yellow (at least 30 minutes). Plates were read photometrically at 405 

nm using a Techan microplate reader. For data analysis, a standard curve (linear curve 

fit) was generated for each assay (Fig. 2.3) and a best-fit line through the points drawn 

using Excel software; this was used to determine the concentration of CGRP in test 

samples. The accuracy of estimation of concentration for unknown samples depends on 

the absorbance falling within the desired range of standard curve. Samples with 

absorbance values beyond standard curve points need to be further diluted or 

concentrated before the assay is performed. 
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Fig. 2.3 A representative CGRP standard curve. This was generated by Excel software 

using linear regression. The blank reading was substracted from the sample or 

standard value and plotted in y-axis. Known concentrations of CGRP standards were 

plotted in x-axis. An equation was displayed above the chart and the peptide with 

unknown concentration in samples can be determined by extrapolation to it.  

 

2.4.2.2 SP 

SP EIA assay was based on the competition between SP and a SP-AChE tracer for a 

limited number of SP-specific binding sites in a rabbit antiserum. Because the 

concentration of the SP-tracer is held constant while the concentration of SP varies, the 

amount of SP-tracer that was able to bind to the rabbit antiserum would be inversely 

proportional to the concentration of SP in the well. This rabbit antiserum-SP (either 

free or tracer) complex was bound via a mouse monoclonal anti-rabbit IgG that had 

been previously attached to the well. The plate was washed to remove any unbound 

reagents, and then Ellman's reagent (which contains the substrate for AChE) was added 

to the well. The yellow product of this enzymatic reaction was read as for CGRP (see 

above). The intensity of this color was proportional to the amount of SP tracer bound to 

the well, which was inversely proportional to the quantity of free SP present during the 

incubation.  
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A sample or standard (0.05 ml) was added into each well followed by 0.1 ml SP-tracer, 

and plates were incubated at 4ºC overnight. After washing 5 times with washing buffer, 

Ellman's reagent was added into plates followed by incubation for 1~2 hours at room 

temperature. A representative SP standard curve is shown in Fig. 2.4, and the unknown 

concentration was determined from it by identifying the %B/B0, which is the (OD405 of 

sample or standard- OD405 of non-specific bound) / (OD405  of  maximum bound- OD405 

of non-specific bound); maximum bound is the reading value form assay when sample 

or standard was not added; non-specific binding (NSB) was obtained by omitting  

sample or standard and antibody from the assay (NSB also is called non-

immunological binding of the tracer to the well; even in the absence of specific 

antiserum, a very small amount of tracer still binds to the well). The sample 

concentrations were extrapolated from the known y-axis value using the standard 

curve.  A new standard curve was generated for every assay. 
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Fig. 2.4 A representative SP standard curve. This was generated by Prism software 

4.0 using nonlinear regression curve fit in two site binding (hyperbola) equation. 

%B/B0 is the % sample or standard bound/maximum bound. Known concentrations of 

SP standards were plotted in x-axis. Unknown concentrations of samples were 

extrapolated using the software based on standard curve created for each assay. 

 

2.4.2.3 NPY 
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Aliquots from the same samples assayed for CGRP or SP were also used to quantify 

the content of NPY present. The immuno-plate in this kit is pre-coated with secondary 

antibody and the non-specific binding sites are blocked. The secondary antibody binds 

to the Fc fragment of the primary antibody whose Fab fragment was competitively 

bound by both biotinylated peptide and peptide standard or samples. The biotinylated 

peptide interacted with streptavidin-horseradish peroxidase (SA-HRP) which catalyzes 

the 3,3',5,5'-tetramethylbenzidine (TMB) substrate solution composed of TMB and 

hydrogen peroxide producing a blue colored solution. The enzyme-substrate reaction is 

stopped by hydrogen chloride, turning the solution yellow which was read at 450 nm. 

The intensity of the yellow is directly proportional to the amount of biotinylated 

peptide-SA-HRP complex but inversely proportional to the quantity of the peptide in 

standard solutions or samples. A standard curve of a peptide with known concentration 

can be established accordingly. The peptide with unknown concentration in samples is 

determined by extrapolation from this standard curve. Very low cross-reactivity with 

SP or vasoactive intestinal peptide (VIP) is seen with this kit. 

 

2.4.2.4 VIP 

Aliquots of samples subjected to the above assays were also used to assess VIP present. 

Procedures were similar as that for NPY assay: 
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antibody

Peptide
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This kit showed very low cross-reactivity to NPY, SP, galanin, or secretin according to 

the information from the supplier. 

 

2.4.2.5 Serotonin 

Samples and standards were acylated and applied to a microtiter plate which was 

precoated with un-acylated serotonin. Serotonin antiserum was applied. Acylated 

serotonin and solid phase-bound serotonin compete for a fixed number of antiserum 
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binding sites. When the system reaches equilibrium, free antigen and free antigen-

antiserum complexes are removed by washing. The antibody bound to the solid phase 

serotonin is detected by anti-rabbit/peroxidase. The substrate TMB/peroxidase reaction 

product is read at 450 nm. The amount of antibody bound to the solid phase serotonin 

is inversely proportional to the serotonin concentration of the sample. The sensitivity 

for CSF and platelet-free plasma samples is 0.3 ng/ml, and the kit displays very low 

reactivity with tryptamine or melatonin.  

 

2.5 Crude fractionation of CGRP- and SP-containing large dense-core vesicles 

(LDCVs) from rat TGs 

TGs were dissected from around 35 5-day-old Wistar rats and homogenized using a 

motor-driven Teflon dounce homogenizer in 10 ml of homogenization buffer [0.32 M 

sucrose, 1 mM EDTA, 4 mM HEPES, pH 7.2, and a cocktail of protease inhibitors 

which is a mixture of protease inhibitors with broad specificity for the inhibition of 

serine, cysteine, aspartic proteases and aminopeptidases, and it contains 4-(2-

aminoethyl) benzenesulfonyl fluoride, pepstatinA, E-64, bestatin, leupeptin, and 

aprotinin without any metal chelators. Lysate was passaged through a 25G needle. 

Nuclei, unbroken cells, and large cell debris were removed by low speed centrifugation 

at 1,200 g for 15 minutes. Microsomes were pelleted by centrifuging the resultant 

supernatant at 100,000 g for 2 hours. Pellets were resuspended and hypo-osmoticly 

lysed for 45 minutes on ice in resuspension buffer (40 mM sucrose, 1 mM EDTA, 4 

mM HEPES, pH 7.2. and 1:100 (v:v) protease inhibitors from sigma). Continuous 

gradients were formed using 10% and 50% sucrose (w/v) in 1 mM EDTA, 4 mM 

HEPES, pH 7.2 with a gradient mixer. The resuspended pellet was then layered above 

this continuous gradient. After centrifugation at 95,000 g for 18 hours at 4°C, fractions 

(600 µl) were collected from the bottom working towards the top; protein 

concentrations were measured with a BCA kit (see 2.14). Aliquots of each fracion were 

solubilised in an equal volume of 4 M acetic acid/0.2% TFA followed by 3 cycles of 

freeze/thaw before the solvent was evaporated using speed-vacuum. The dried pellets 

were dissolved in EIA buffer before assay for CGRP or SP concentration by EIA.  

 

2.6 Immuno-absorption of vesicles from TGNs 
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Cultured TGNs from a pair of 24-well plates were washed and treated as above (in 2.5), 

modified from (Berg et al., 2000). After the resultant supernatant was subjected to 

centrifugation at 100,000 g for 2 hours, and the resultant pellets resuspended in ice-cold 

hypotonic lysis buffer (40 mM sucrose, 1 mM EDTA, 4 mM HEPES, pH 7.2 and 1:100 

(v:v) protease inhibitors from Sigma) for 45 minutes to osmoticly lyse microsomes and 

librate vesicles, then vesicles were sedimented (100,000 g for 2 hours) then 

resuspended in homogenisation buffer without applying to continuous gradient 

centrifugation.  Aliquots of the suspension (~144 µg protein determined by BCA assay) 

were incubated overnight at 4°C with rabbit antibodies (10 µg) specific for Sbr I or II 

(these antibodies recognise N-terminal cytoplasmic domain), or rabbit non-immune 

control IgG, all coupled to protein A agarose; the beads were washed 5 times with 

homogenisation buffer. Equal aliquots (0.5 ml) were sedimented and pellets dissolved 

in 2 x LDS sample buffer for SDS-PAGE, or in 2 M acetic acid/0.1%TFA for EIA; the 

solvents were removed from the latter by vacuum drying and the residues dissolved in 

EIA buffer for CGRP quantitation.  

 

2.7 Co-immunoprecipitation of SNAREs from detergent solubilised TGNs  

The pellets of PBS-washed TGNs were dissolved in 1 ml of extraction buffer [(mM): 

KCl, 140; EDTA, 2; HEPES-KOH pH 7.3, 20; and 1% (v/v) triton X-100].  After 

extraction for 1 hour at 4°C and centrifugation for 3 minutes at 700 g to remove 

unlysed cells and large debris, the supernatant was incubated overnight at 4°C with 10 

µg of rabbit IgG against Sbr I or II, or syntaxin II or III coupled to protein A agarose 

beads.  After sedimentation, the beads were washed 5 times in extraction buffer and 

proteins eluted using 2xLDS-PAGE sample buffer. A control sample was treated 

similarly except rabbit non-immune IgG was used.  SNAREs were detected by SDS-

PAGE and Western blotting, as described later.  

 

2.8 Treatment of neurons with BoNTs: monitoring of effects on CGRP release, 

SNARE cleavage, and exo-endocytotic activities 

 

2.8.1 Toxin incubation, release of neurotransmitters, cell lysis, SDS-PAGE and 

immunoblotting 
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After 7 DIV, fresh medium alone or that containing natural BoNT/A, /B, /C1, /D, /E or 

engineered chimeric toxin was added to the TGNs at 37°C for times indicated in figure 

legends, at the concentrations specified. After removal of the unbound toxin and 

subsequent washing with 2 x 1 ml of toxin-free BR-HBS buffer, Ca2+-dependent basal 

release of CGRP or SP and that evoked by 60 mM K+, 1 µM capsacin or 0.1 µM 

bradykinin were measured, as described previously. Non-toxin treated samples were 

processed similarly. In each case, stimulated release was calculated as in 2.4.1. 

Expression of the resultant values for BoNT-treated samples relative to those for the 

controls gave the % of CGRP or SP release remaining. After the release assay, the cells 

in each well were lysed in 0.2 ml of 2 x LDS sample buffer, heated for 5 minutes at 

95°C and separated by SDS-PAGE using 12% precast Bis-Tris gels (Foran et al., 2003). 

Specific antibodies were used for the Western blotting analysis. 

 

2.8.2 Quantitation of substrate cleavage  

After ECL development, digital images were obtained using the G BOX Chemi-16 gel 

documentation system; intensities of each lane were quantified with Image J software. 

For determination of the fraction of each SNARE cleaved, the ratios calculated for 

intact substrate and the requisite internal standard (i.e. a SNARE not susceptible to the 

toxin in use, to normalize any variation between wells) for BoNT-treated samples were 

expressed relative to those for non-toxin treated controls. Data were calculated and 

graphs generated by Excel and Prism 4.0 software; each point represents the mean ± 

s.e.m or mean ± s.d., as indicated in figure legends from several independent 

experiments.  

 

2.8.3 Ecto-Syt I binding and uptake into TGNs  

For assay of synaptic vesicle exocytosis and recycling, rat TGNs were cultured for 7 

DIV on poly-L-lysine and laminin coated coverslips, and incubated with 100 nM 

BoNT/A or chimera EA in culture medium for 24 hours. Toxins were washed away 

and cells exposed to Ecto-Syt Abs (1:100) for 15 minutes in the basal buffer, or 60 mM 

K+ or 1 µM capsaicin stimulation buffer (as described previously for CGRP release 

assays). After washing three times with basal buffer, cells on coverslips were fixed for 

20 minutes with 3.7% paraformaldehyde in Ca2+- and Mg2+-free PBS at room 

temperature and fluorescent  images were recorded using an Olympus IX71 inverted 
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microscope fitted with epifluorescence. Images were captured with a CCD camera and 

processed using Image Pro-Plus version 5.1 (Media Cybernetics). 

 

2.9 Measurement of intracellular [Ca2+] and Ca2+ uptake into TGNs 

Coverslips containing TGNs were loaded with 3 µM Fluo 4-AM in basal release buffer 

at room temperature for 20 minutes, mounted on a custom-built low-volume (350 µl) 

chamber attached to an Axioskop 2 FS MOT/LSM Pascal confocal microscope (Zeiss). 

An argon laser was used to excite Fluo 4-AM at 488 nm. Serial images were taken of 

Ca2+ fluorescent signals at 10 sec. intervals while the superfusate was switched after ~2 

minutes from BR-HBS to stimulation buffer: 60 mM K+ or 1 µM capsaicin. The 

intensity of fluorescence at 505~530 nm (f) was analysed off-line on a cell-by-cell 

basis, and expressed relative to the baseline fluorescence (f0) measured for each cell in 

BR-HBS. Mean f/f0 ratios ± SEM were plotted; n values are given in figure legends 

(Fig. 5.11).  

Cultured TGNs were incubated with 24 µCi/ml 45Ca2+ in BR-HBS containing 0.1% 

ethanol, l µM capsaicin or 60 mM K+ at room temperature for the times indicated in the 

figure. The incubation was stopped by 6 washes in 1 ml BR-HBS buffer, the samples 

solubilised in 200 µl of 0.1% SDS and counted in Beckman CP scintillation 

spectrometer. Ca2+ uptake was calculated from a standard curve of the amount of  
45Ca2+ against counts/minute. 

 

2.10 Knock-down of Sbr I gene expression in cultured TGNs using small hairpin 

RNA (shRNA)  

ShRNA (small hairpin RNA) lentiviral particles for knock down of Sbr I gene 

expression were used; these are transduction-ready viral particles with ~1.5×107 

transduction units (TU)/ml. The shRNA target set contains five clones specific for 

different regions of mouse Sbr I mRNA (Table 2.2). 20 µl (3×105 TU) of each clone of 

shRNA viral particles were added to 200 µl culture medium and applied to ~105 

cells/well of mouse cultured TGNs at 7 DIV; 200 µl fresh culture medium was added 

the next day and every other day thereafter. Neurons which were not treated by viral 

particles were used as negative controls. Infected cells were kept in culture for 8-10 

days before monitoring of basal and stimulated release of CGRP detailed in 2.4.1. 

Immediately thereafter, cells were solubilized in 2xLDS sample buffer prior to analysis 
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of level of each SNARE protein by SDS-PAGE and Western blotting, with specific 

antibodies for SNAP-25 (SMI-81), syntaxin I (HPC-1), Sbr I (rabbit IgG) or Sbr II 

(rabbit IgG). 

 

Table 2.2 ShRNA target set for knock-down of mouse Sbr I 

Clone 

no. 
ShRNA TRC No. Sequence 

5 TRCN0000110585 CCGGCGGGAATTATTTCCTGGGTTTCTCGAGAAACCCAGG

AAATAATTCCCGTTTTTG 
Region: 3’UTR  

4 TRCN0000110586 CCGGGCCATCATCGTGGTAGTGATTCTCGAGAATCACTAC

CACGATGATGGCTTTTTG 
Region: CDS  

3 TRCN0000110587 CCGGCGTGGTAGTGATTGTAATCTACTCGAGTAGATTACA

ATCACTACCACGTTTTTG 

Region: CDS  

2 TRCN0000110588 CCGGGCTGGGAGCTATCTGTGCCATCTCGAGATGGCACAG

ATAGCTCCCAGCTTTTTG 

Region: CDS  

1 TRCN0000110589 CCGGCATGACCAGTAACAGGCGGTTCTCGAGAACCGCCTG

TTACTGGTCATGTTTTTG 
Region: CDS  

3’UTR, 3’ untranslated region; CDS, coding sequence; TRC, the RNAi consortium 

 

2.11 Generation of a novel BoNT chimera EA which binds to the BoNT/A 

acceptor SV2C-L4 in vitro.  

 

2.11.1 Designing a construct for BoNT chimera EA by recombinant substitution of 

the HC domain of BoNT/E with its counterpart from BoNT/A 

In order to re-target BoNT/E proteolytic LC into TGNs insensitive to BoNT/E, I 

designed a new EA chimera.  The LC and HN gene fragments from BoNT/E (LC-HN/E) 

were fused to the HC of /A (HC/A) to generate chimera EA transgene (LC-HN/E-HC/A).  

 

2.11.2 Creation of chimera EA: construction, expression and purification followed 

by nicking with Trypzean 
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The chimera EA transgene was cloned into a prokaryotic expression vector and 

expressed in E. coli BL21 (DE3) strain. Its detailed construction, expression and 

purification were performed by Dr. Wang J and are described in (Wang et al., 2008). 

Nicking of this chimeric toxin between LC and HC was achieved by incubation with 

Trypzean (8 µg/mg BoNT) for 1 hour at 25°C and monitored by SDS-PAGE, followed 

by Coomassie protein staining and Western blotting, using rabbit antibodies against 

BoNT/A and LC/E.   

 

2.11.3 GST-SV2C-L4 pull-down assay for toxin-acceptor interaction 

A cDNA portion encoding the intra-luminal for toxin-acceptor interaction SV2C loop 4 

(SV2C-L4, amino acids 454-579) was PCR amplified from pCMV SV2C plasmid (a 

gift from T. Südhof, Houston, Texas), cloned into pGEX-2T and expressed in BL21 

(DE3) E. coli by Dr. Astrid Sasse. 

For pull down assay, GST-SV2C-L4 (~100µg) was immobilised onto 100 µl of 

glutathione–Sepharose-4B matrix and incubated with BoNT/A, /E, or EA chimera (100 

nM each) in a total volume of 100 µl of binding buffer (50 mM Tris, 150 mM NaCl, 

0.5% triton X-100, pH 7.6) in the presence of 0.6mg/ml gangliosides mixtures for 4 

hours at 4°C. Beads were collected by centrifugation and washed five times, each wash 

for 15 minutes at 4ºC with 1 ml of binding buffer. Bound proteins were eluted by 2x 

LDS-sample buffer, and less than 5% of bound protein was subjected to electrophoresis 

on 4-12% precast Bis-Tris gels. Toxins were detected by Western blotting with IgGs 

against LC/E or BoNT/A. Input GST-SV2C-L4 protein was detected with goat anti-

SV2C antibody. 

 

2.12 Production of BoNT chimeras AB (LC-HN/A-HC/B) and BA (LC-HN/B-HC/A)  

I designed BoNT chimeras AB and BA by recombinant substitution of the HC domain 

in /A and /B with their counterpart from the other serotype. The construction, 

expression and purification were performed by Dr Wang J (our unpublished data). 

Nicking of chimera AB toxin between LC and HC was achieved by incubation with 

Trypzean (3 µg/mg BoNT) for 1 hour at 25°C, followed by addition of soyabean 

trypsin inhibitor (30 µg/mg BoNT). Chimera BA which contains an engineered 

thrombin cleavage site in the loop region was efficiently and precisely nicked by 

thrombin (1 U/mg toxin) for 1 hour at 22°C, followed by addition of PMSF to a final 

concentration of 1 mM.  
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2.13 SDS-PAGE, protein staining, Western blotting and 2-dimensional (2-D) gel 

electrophorisis 

 

2.13.1 SDS-PAGE 

Proteins were loaded onto 12% or 4-12% precast Bis-Tris gel and electrophoresis run at 

180 volts using MOPs running buffer (1 liter: 250 mM MOPS, 250 mM Tris, 5 mM 

EDTA, 0.1% SDS) until  proteins were separated according to their molecular weights, 

indicated by pre-stained protein markers. Proteins were then fixed and stained as 

detailed in 2.13.2 or 2.13.3, or electrophoretically transferred to a Immobilon™ PVDF 

membrane for immunoblot assay as described in 2.13.4.  

. 

2.13.2 Sypro-ruby staining of protein gels 

Gels were rinsed with distilled water and fixed in 10% methanol/7% acetic acid (v/v) 

for 30 minutes with shaking at room temperature. After rinsing the gels with distilled 

water, 10 ml of Sypro-ruby staining solution was added to the gel-trays which were 

covered by foil to protect from light. The staining was carried overnight with shaking 

at room temperature. After rinsing with distilled water and destaining with 10% 

methanol/7% acetic acid for 30 minutes, the gels were visualized under UV and stained 

bands were recorded using the gel-documentation system (described above). 

 

2.13.3 Coomassie Blue staining 

Protein gels prepared as in 2.13.1 were placed in 0.25 % (w/v) of  Coomassie brilliant 

blue G 250 in 10% acetic acid (v/v) and 45 % methanol for 2-4 hours with gentle 

rocking to distribute the dye evenly over the gel. Gels were destained using 30% 

methanol/10% acetic acid until protein bands became distinct. 

 

2.13.4 Western blotting  

A piece of PVDF membrane with a rated pore size of 0.45 µm (Millipore) was wet for 

about 30 second in methanol followed by rinsing with ddH2O twice, before soaking in 

transfer buffer (1L: 25 mM Tris-base, 190 mM glycine, 100 ml methanol and 900 ml 

H2O) for 15 mins; then, assemble "sandwich" for transblot:  (+) Sponge - filter paper -

membrane - protein gels (prepared as in 2.13.1) - filter paper - sponge (-). Then put 

assembled "sandwich" in a transfer tank (TE62, Hoefer. Inc.)  filled with transferring 
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buffer as above and transfer for 2~3 hours at 45 volts at 4°C; When finished, immerse 

membrane in blocking buffer (1L: 5 ml 2 M Tris-bis, 30 ml 5 M NaCl, 1 ml Tween 20, 

7.6, 5% skimmed milk w/v) and block for 1 hour at room temperature. Then incubate 

with primary antibody diluted in blocking buffer for 1 hour at room temperature. After 

washing 3 x 10 min with 0.1 % Tween 20 in PBS, anti-species secondary antibodies 

conjugated to horseradish peroxidase (diluted in blocking buffer) were incubated for 1 

hour; following washing 3 x 10 min with 0.1 % Tween 20 in PBS, proteins were 

detected by ECL reagent which contains a luminol substrate of horseradish peroxidase 

and can be converted to a light releasing substance.  Images were recorded using G 

BOX Chemi-16 gel documentation system and intensities quantified with Image J 

software. 

 

2.13.5 2-dimensional (2-D) gel electrophorisis  

An established 2D SDS-PAGE method (Lawrence and Dolly, 2002) was used to 

investigate whether cleaved SNAP-25 products form SDS-resistant SNARE complexes 

during Ca2+-triggered exocytosis in rat cultured TGNs treated with BoNT/A or chimera 

EA. After stimulating cells with 1 µM capsaicin for 30 minutes at 37°C, the buffer was 

removed and cells solubilised in LDS-sample buffer without boiling. Proteins were 

separated by SDS-PAGE on 4-12% precast Bis-Tris gel. Each sample lane was cut into 

strips reflecting different distances of migration through the gel, chopped into small 

pieces and boiled for 10 minutes in LDS-sample buffer; after being left overnight at 

room temperature, the samples were boiled again for 5 minutes before loading the 

extracted proteins onto a second 12% precast Bis-Tris gel. SNAREs released from 

complexes after boiling were detected in the second gel by Western blotting with 

specific antibodies, their position indicating the migration distance through the first gel 

(i.e. Mr of the SDS-resistant SNARE complex). 

 

2.14 Protein concentration assay by BCA protein assay kit  

The BCA protein assay combines the well-known reduction of Cu2+ to Cu+ by protein 

in an alkaline medium with the highly sensitive and selective colorimetric detection of 

the cuprous cation (Cu+) by bicinchoninic acid. The first step is the chelation of copper 

by protein in an alkaline solution to form a blue colored complex. In this step, known 

as the biuret reaction, peptides containing three or more amino acid residues form a 

light blue colored chelate complex with cupric ions in an alkaline environment (pH 8.0). 
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Proteins will react to produce a light blue to violet complex that absorbs light at 540 

nm. The intensity of the color produced is proportional to the number of peptide bonds 

participating in the reaction. In the second step of the color development reaction, BCA, 

a highly sensitive and selective colorimetric detection reagent reacts with the cuprous 

cation (Cu+) that was formed in step 1. The purple-colored reaction product is formed 

by the chelation of two molecules of BCA with one cuprous ion. The BCA/copper 

complex is water-soluble and exhibits a strong linear absorbance at 562 nm with 

increasing protein concentrations. Briefly, 25 µl of sample from each fraction or BSA 

standard were applied to a 96 microplate; 200 µl mixture of reagent A and B (50:1) 

supplied in the kit were added to each well. The plate was mixed thoroughly and 

incubated for 30 minutes at 37°C before absorbance at 562 nm was read. 

Concentrations were calculated from the linear range of the standard curve. 

 

2.15 Statistical analysis 

Data were calculated and graphs generated by GraphPad Prism 4.0; each point 

represents the means ± S.E.M. or ± S.D. as indicated in Figure legends; student’s 

unpaired t-test was used to evaluate significance of changes. 
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3.0 TGNs are a suitable model for investigating anti-nociceptive potential of 

BoNTs 
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3.1 Overview 

This chapter describes the culturing of TGNs and demonstrates their expression of 

sensory neuron markers and the release of pain-peptides in response to K+-

depolarisation or known pain stimuli. These cells were then used to establish a basis for 

the putative anti-nociceptive effects of BoNT/A and to evaluate the roles of particular 

SNARE isoforms in regulated CGRP exocytosis (Chapter 4). Based on insights gleaned 

with natural BoNTs, novel BoNT chimeras were generated recombinantly with the goal 

of eventually creating new variants with improved anti-nociceptive potential (Chapter 

5). 

 

3.2 Results 

 

3.2.1 Dissection of TGs and culture of their neurons  

Neonatal rats or mice were used as a source of TGs because sensory neurons usually 

appear at embryonic day E10-13 for mouse, and E9-14 for rat. At P3-5, mouse and rat 

TGs are bigger than in the embryonic stage, relatively ease to dissect and readily 

susceptible to enzymatic dissociation. The dissociated TGNs were seeded onto poly-L-

lysine and laminin precoated 24-well plates and cultured in F12 or DMEM medium 

supplemented with nerve growth factors (NGF 2.5s or 7s), as detailed in the Chapter 2. 

Sensory neurons obtained from neonatal rats require neuronal trophic factors, 

especially NGF to support differentiation, maintain phenotype and induce synthesis of 

transmitters (Malin et al., 2007). Immediately after plating cells, neuronal cell bodies 

were round, smooth, and phase-bright and usually less than 50% of total cell count. 

Within 2 hours of plating, most of neuronal cells attach to the coated surface. Neurites 

were discernable the next day. Non-neuronal cells attached more firmly to the culture 

surface, and divided quickly to occupy the growth area; thus, it was necessary to 

remove them as soon as possible. Therefore, Ara-C, a pyrimidine anti-metabolite that 

inhibits DNA synthesis, was added on day 2-5 to kill proliferating cells; 

fluorodeoxyuridine and uridine also proved effective.  By day 5, most of the non-

neuronal cells had died and cell debris could be removed by several changes of the 

culture medium. Morphological and histochemistrical experiments, neurotransmitters 

release assays, and treatment with toxins were performed at 5-7 DIV.   
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3.2.2 Morphological and histochemical features of the cultured neurons  

 

3.2.2.1 Phase contrast microscopy of rat and mouse TGNs 

Phase contrast micrographs revealed that rat (Fig. 3.1 A, B) and mouse (Fig. 3.1 C) 

neuronal cells are easily distinguished by large, round, phase-bright cell bodies with 

extended fine fibres (Fig. 3.1). At 1 DIV, satellite cells show spindle-liked cell soma 

shape and relative broader fibres; Astrocytes usually have polygonal or star shape with 

short fibres (Fig. 3.1 A). TGNs possessed bipolar or multi-polar neurite extensions; 

some had a pseudo-unipolar shape. There was no distinct difference in the neuronal 

morphology between rat and mouse (Fig. 3.1 B, C). At 7 DIV neuronal cells are 

enriched comparing with 1 DIV (Fig. 3.1 B, C). Just like TGNs in vivo, the cultured 

neurons seemed to be roughly made up of two populations representing small and large 

neurons. 
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Fig. 3.1 Visualisation of the morphology of sensory neurons in cultured TGNs. Cell 

cultures from (A) rat (P5) at 1DIV, (B) rat (P5) and (C) mouse (P5) at 7 DIV were 

viewed in an inverted Olympus IX71 microscope in phase contrast mode. Compared 

with 1 DIV, TGNs were enriched at 7DIV. Neuronal cells are indicated by arrow heads, 

A respresentive astrocyte is indicated by arrows, and a satellite cell is circled. Scale 

bar, 30 µm.  
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3.2.2.2 Rat cultured TGNs display characteristics of sensory neurons: nociceptive 

markers and pain mediators 

 

3.2.2.2.1 A large proportion of DAPI-stained cells are immuno-stained for NF-200 

indicating enrichments for the neuron cells at DIV 5-7 

NF-200 is a phosphorylated heavy chain of neurofilament, a major marker for neuronal 

cells. Neurofilament expression is developmentally regulated and all cells containing 

neuron-specific enolase epitopes also are labelled with NF200 (Trojanowski et al., 

1986). A mAb against NF-200 stained both the cell soma and, strikingly, the processes 

of cultured TGNs (Fig. 3.2). After repetative treatment by Ara-C, there was only very 

limited contamination by non-neuronal cells, which cannot be totally removed by 

addition of anti-mototic regent because they proliferate slowly.  

 

3.2.2.2.2 CGRP  

The presence of a major pain-mediating peptide, CGRP, in most of the cells in TGN 

cultures was demonstrated by immuno-fluorescent microscopy and counter-staining 

with DAPI (Fig. 3.3). Striking punctate staining by a specific polyclonal antibody 

against CGRP was visualized on cell plasmalemma and along the fibres. 

 

3.2.2.2.3 SP co-occurs with CGRP 

Another pain peptide, SP, was found to co-occur with CGRP in cultured TGNs using a 

fluorescent inverted microscope (Fig. 3.4 A, B) and by confocal microscopy (Fig. 3.4 C, 

D, E). Both demonstrated predominant staining of the cell bodies with a mAb specific 

for SP and a polyclonal antibody against CGRP (as in Fig. 3.3) and less intense 

labelling of the extensive neurites. Confocal microscopy confirmed punctate staining 

for the two peptides throughout the cytoplasm and adjacent to the plasma membrane of 

the cell bodies and processes; the merged picture highlights the overlapping, but to 

some extent distinct, subcellular locations of CGRP and SP. 
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A, NF-200 B, DAPIA, NF-200 B, DAPI

 
 Fig. 3.2 Representative micrographs demonstrating that most of the cultured cells 

were NF-200 positive, indicative enrichment of neurons at 5 DIV. Cells were grown 

on coverslips for 5 DIV, fixed and permeabilised prior to labelling overnight at 4 ºC 

with (A) mouse anti-NF-200 (1:500), followed by goat anti-mouse Alexa Fluor-488 

(1:200) for 1 hour at room temperature. (B) Samples were counter-stained by DAPI 

before being mounted onto slides and viewed in an inverted microscope under 

fluorescent mode. Scale bar, 30 µm. 

 

B, DAPI A, CGRP 

 
    

Fig. 3.3 Visualisation of CGRP immunoreactivity in cultured TGNs. Rat TGNs grown 

on coverslips for 7 DIV were fixed, permeabilised and stained by rabbit anti-CGRP 

antibody (1:500) (A) , followed by fluorescently-labelled secondary goat anti-rabbit 

Alexa Fluor-448 (1:200); the specimens were counter-stained with DAPI (B)  before 

samples were viewed in an inverted microscope in fluorescent mode. Scale bar, 20µm.  
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Fig. 3.4 Visualisation of CGRP and SP immunoreactivity in rat cul

CGRP and SP appeared to occur in the same neurons when visulaised

magnification microscopy (A, B) but confocal microscopy revealed s

distribution (C, D, E). Mouse mAb against SP (1:1000) (B, C, E) followed

mouse Alexa Fluor-488 (1:200), and rabbit polyconal antibody against C

(A, B, D, E) followed by goat anti-rabbit Alexa Fluor-546 (1:200), were a

was used to counter-stain (A, B).  Scale bars, 20µm (A, B) and 5µm (C-E).
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3.2.2.2.4 Vanilloid receptor type 1(VR1) - capsaicin receptor   

The TGNs exihibited characteristics of differentiated pain sensory cells, as reflected by 

the staining patterns observed with antibodies to specific sensory markers. An antibody 

specific for VR1  a vanilloid receptor type 1 which is responsive to capsaicin and 

occurs in peptidergic C fibres (Caterina et al., 1997)  labelled a majority of the rat 

neurons (Fig. 3.5). VR1 immunoreactivity resided predominantly on the cell bodies and 

to a much lesser extent on fibres.  

 

3.2.2.2.5 VR1 and bradykinin receptor type 2 (BR2)  

Another sensory marker, BR2  a G protein-coupled receptor known to occur in 

nociceptive neurons (Steranka et al., 1988)  was detected in the VR1-positive cells, 

by labelling with a selective antibody (Fig. 3.6). Notably, the immunoreactivity 

appeared strongest in patches on the neurons (Fig. 3.6 B, C). Confocal microscopy 

clearly demonstrated BR2 protein located in a specific region (vascular-like 

distribution) and to a much lesser extent in the rest of cell membrane and cytoplasm 

(Fig. 3.6 E, G).  

 

     

 A, VR1 B, DAPI  

 

Fig 3.5 Visualisation of VR1 immunoreactivity in rat cultured TGNs. TGNs grown on 

coverslips at 7 DIV were fixed, permeabilised and stained with rabbit anti-VR1 

(1:1000) (A) followed by a fluorescently-labelled secondary goat anti-rabbit Alexa 

Fluor-546 (1:200); the specimens were counter-stained with DAPI (B) before viewing 

under low-magnification fluorescent microscopy. Scale bar, 30µm. 
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3.2.2.2.6 IB4 binding and DAPI staining 

Another nociceptive sensory neuron marker is revealed by a fluorescent conjugate of 

IB4, an isolectin that binds to small nociceptive neurons in C fibres (Guo et al., 1999). 

It stained most of the cells counterstained by DAPI (Fig. 3.7); these are irregular in 

shape and vary in size. It has been suggested that IB4-positive nociceptors mediate 

neuropathic pain, whereas IB4-negative nociceptors mediate inflammatory pain. More 

evidence is needed to support this theory (Stucky et al., 2002). 

 

  

A, IB4 B, DAPI 

 

Fig 3.7 Fluorescence staining of IB4 binding neurons. Rat cultured TGNs at 7 DIV 

were fixed by 3.7% paraformadelhyde in CMF-PBS for 20 minutes at room 

temperature, followed by rinsing for 3 times with PBS. Staining was performed by 4 

µg/ml FITC-IB4 (A) in 0.1 M phosphate buffer (see Chapter 2), 0.1 mM CaCl2, 0.1 mM 

MgCl2, 0.1 mM MnCl2 for 1 hour at room temperature. DAPI was applied for 5 

minutes to counter-stain the samples (B). Specimens were viewed in an inverted 

microscope in fluorescent mode. Scale bar, 20µm. 
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3.2.2.3 Sensory peptidergic TGNs contain all 3 SNAREs (SNAP-25, syntaxin, and 

Sbr) and synaptotagmin I/II which largely co-localise with CGRP  

 

3.2.2.3.1 SNAP-25, SNAP-25 and CGRP, SNAP-25 and VR1 

With regard to the molecular machinery underlying the regulated release of pain-

peptides, it was important to identify the key isoforms of SNAREs and SNARE- 

related proteins present in sensory neurons, especially because of these being related to 

the sensitivity to BoNTs. Lower magnification micrographs showed that the majority 

of neurons were stained with a specific antibody against SNAP-25 (Fig. 3.8 A), a target 

substrate of BoNT/A and /E. SNAP-25 co-staining with CGRP could be visualised by 

confocal immuno-microscopy (Fig. 3.8 B). Labelling of SNAP-25 appeared on the 

membrane of cell bodies, axons (broad) and dendrites (fine); also, punctate staining 

was visible in the cytoplasm. Dual-labelling of VR1 and SNAP-25 indicated nearly all 

the VR1-positive cells express SNAP-25 (Fig. 3.8 C). 

 

3.2.2.3.2 Syntaxin isoforms I, II, and III are expressed in TGNs 

In rat synaptosomes, syntaxin I, II and III are known to be cleaved by BoNT/C1 

(Schiavo et al., 1995). However, the presence of these proteins in nociceptive sensory 

neurons and their functions in pain-related peptides release are not clear. Herein, using 

immunofluorescence staining with isoform specific antibodies, it was demonstrated 

that these three isoforms are expressed in cultured TGNs.   

 

3.2.2.3.2.1 Syntaxin I and CGRP 

Labelling of the other t-SNARE, syntaxin I with a specific mAb gave a similar pattern 

of staining to that observed for SNAP-25. Lower magnification immunofluorescence 

micrographs demonstrated a majority of DAPI-stained cells expressing syntaxin I (Fig. 

3.9 A). However, immunoreactivity towards syntaxin I seemed stronger in certain cells 

and lower in others. Confocal microscope (Fig. 3.9 B) demonstrated that labelling of 

syntaxin I definitely appeared on the cell membrane as well as processess; also, 

punctate staining was visualised in the cytoplasm near the nucleus. Clearly, CGRP 

occurs together with syntaxin I as revealed by dual-labelling (Fig. 3.9 B). 
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3.2.2.3.2.2 Co-staining of syntaxin II or III with NF-200 

The presence of syntaxin II in cultured TGNs was confirmed by immuno-fluorescence 

microscopy, using a specific antibody against syntaxin II. Similar to syntaxin I, 

syntaxin II labelling appeared on the membrane of cell bodies, and to a much lesser 

extent on neurites, which were strongly labelled by NF-200 antibody (Fig. 3.10 A). 

Syntaxin isoform III was also expressed in TGNs and showed similar distributions as 

isoform II (Fig. 3.10 B). 

 

3.2.2.3.3 Sbr I and CGRP, Sbr II and CGRP 

Both of the v-SNARE isoforms, Sbr I and II, which are the substrates of Sbr-cleaving 

toxins as listed in the Chapter 1, were visualised by low magnification microscope (Fig. 

3.11 A), using antibodies selective for each. Focusing on the fine fibres at higher 

resolution revealed striking punctate labelling which co-localised well with CGRP (Fig. 

3.11 A). Confocal microscopy also confirmed Sbr II staining was located 

predominantly in the cell body with ‘vesicular-like’ staining visible in the perinuclear 

area and to a lesser extent along the fibres. Additionally, the extensive network of 

neurites was clearly labelled (Fig. 3.11 B). Next, it was warranted to define which 

isoform could be involved in the release of transmitters.   

 

3.2.2.3.4 Synaptotagmin I and CGRP  

Finally, using confocal microscope to visualise the vesicle protein synaptotagmin I, a 

Ca2+ sensor whose N-terminal is exposed to the lumen of the synaptic vesicle, binds to 

SNAP-25 and also serves as a putative high-affinity protein acceptor for BoNT/B and 

/G. The micrographs showed a striking punctate pattern of staining for synaptotagmin I, 

both in the cell body and along all the fine processes (Fig. 3.12 A, C). Importantly, dual 

labelling with antibody reactive towards CGRP (Fig. 3.12 B, C) demonstrated that this 

protein and CGRP are strongly co-localized (Fig. 3.12 D). This indicates that this Ca2+ 

sensor might be involved in CGRP release. 

 

In conclusion, CGRP occurs together with SNAP-25, syntaxin I, Sbr (I and II) and 

synaptotagmin I in the rat cultured TGNs. Although most of the cells became stained 

with all of these antibodies, some differences were apparent in the relative labelling 

intensity for CGRP and each of these proteins in individual neurons.  The striking 

similarities apparent in the distribution patterns for Sbr I, synaptotagmin I and CGRP 
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are suggestive of functional implications (see later). These collective findings highlight 

that all 3 SNAREs and the putative Ca2+ sensor, synaptotagmin I, occur in CGRP-

containing sensory neurons that, also, usually possess SP. 
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Fig. 3.9 Visualization of the presence of syntaxin I in rat TGNs together with CGRP. 

Normal (A) or confocal immuno-fluorescence miscroscopy (B) were used to capture 

the images. Cells grown on coverslipes at 7 DIV were fixed, permeabilised and 

labelled with specific antibodies against (A) syntaxin I (1:500) followed by goat anti-

mouse Alexa Fluor-488 (1:200) and counter-stained by DAPI, or (B) syntaxin I (1:500) 

(and goat anti-mouse Alexa Fluor-488 (1:200)) and CGRP (1:500) (and goat-anti 

rabbit Alexa Fluor-546 (1:200)). Scale bars, 15µm (A) and 5.88 µm (B).  
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Syntaxin II + NF-200NF-200 Syntaxin IIBright field

Syntaxin III + NF-200NF-200 Syntaxin IIIBright field

A
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Fig. 3.10 Microscopic demonstration of the presence of syntaxin II and III in rat 

cultured TGNs. The cells were grown on coverslips for 7 DIV, fixed and 

permeabalised prior to labelling with rabbit IgGs against (A) syntaxin II (1:1000) or 

(B) syntaxin III (1:1000) (and goat-anti rabbit Alexa Fluor-546 (1:200)) or mouse anti-

NF-200 (1:200) (and goat anti-mouse Alex Fluor-488 (1:200)). Samples were viewed 

in an inverted microscope in phase contrast and fluorescent mode, as indicated in 

pictures. Syntaixn II and III labelling appeared predominantly on the neuron cell 

bodies and to a much lesser extent in processes. Scale bar, 20µm. 
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Fig. 3.11 Representative fluorescence micrographs 

and II in CGRP-containing rat cultured TGNs. Cells
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Fig. 3.12 Visualization of the punctate co-staining of synaptotagmin I and CGRP in 

rat cultured TGNs. Cells grown on coverslips for 7 DIV were fixed and permeabilised 

before labelling with Mab against the lumenal domain of (A) synaptotagmin I (1:1000) 

followed by goat anti-mouse Alexa Fluor-488 (1:200), or (B) rabbit antibody against 

CGRP (1:500) followed by goat anti-rabbit Alexa Fluor-546 (1:200). (C) Merged 

picture showing overlapped signals. (D) The axes represent density of each fluorescent 

signal and the analysis graph shows the extent of co-localization of two fluorescence 

signals. Scale bar, 15µm. 
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3.2.3 Evoked-release of neurotransmitters from rat cultured TGNs  

 

3.2.3.1 K+ depolarisation-, capsaicin- or bradykinin-elicited release of CGRP and 

SP from cultured TGNs are Ca2+-dependent and show different levels 

After culturing TGNs for 7 days, the amounts of CGRP released under basal and 

stimulated conditions were quantified by EIA. The optimal stimulation time was 30 

minutes (Fig. 3.13 A). A minimal quantity of ‘resting’ release occurred in 3.5 mM 

K+/2.5 mM Ca2+ compared to the amounts evoked by elevated [K+], 60 mM K+ giving 

an optimal ~ 14-fold increase over the basal level (Fig. 3.13 B). Nearly all of this 

increment could be prevented by removal of Ca2+ from the external medium (Fig 3.13 

B), demonstrating a Ca2+-dependency. Likewise, K+ depolarisation-evoked SP release 

is also Ca2+-dependent but the extent of this increment (2.5-fold over basal) was much 

lower than that for CGRP (Fig. 3.13 C). Consistent with TGNs containing the VR1 

protein (demonstrated earlier), capsaicin-triggered CGRP release was Ca2+-dependent; 

1 µM gave a maximum of 3.3-times increment over basal (Fig. 3.14 A). Consistent 

with the occurrence of BR2 protein in the TGNs described earlier, bradykinin 

stimulated CGRP release is also Ca2+-dependent (Fig. 3.14 B). A maximum increment 

of 3.9-times over basal was achieved with 0.1 µM bradykinin. Collectively, the 

stimulation of Ca2+-dependent CGRP release from TGNs by K+, capsaicin and 

bradykinin accords with their efficacies in elevating the efflux of peptidergic 

transmitters in brain, as measured in perfusates (Gazerani et al., 2006).   
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Fig. 3.13 CGRP and SP release evoked by K+ from TGNs are K+-concentration and 

Ca2+-dependent: 30 minutes proved optimal. After 7 DIV, rat cultured TGNs were 

incubated in BR-HBS at 37 °C with varying times for basal release (hollow bars) 

followed by incubation in BR-HBS in the presence of 60 mM of K+,  for the same 

period as for basal, to stimulate CGRP release. Buffer bathing the cells were carefully 

removed and quantity of released CGRP was measured by EIA; 30 minutes incubation 

time proved to be optimal (A). In order to optimize the concentration of K+ used for 

stimulation of  CGRP (B) or  SP release (C), basal release over 30 minutes was 

measured in BR-HBS (hollow bars), then supplemented with various concentrations of 

K+ (isotonically-balanced Na+ concentration) for the same period as for stimulated 

release (filled bars). Release stimulated by 60 mM [K+] represented 30% (CGRP) or 

8% (SP) of the total content in cells. Ca2+-independent release was determined using 

Ca2+-free BR-HBS containing 2 mM EGTA. Data plotted are means ± S.D.; n = 4;  

student’s unpaired t-test: **, p<0.01.  
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Fig 3.14 CGRP release evoked by capsaicin or bradykinin from TGNs is 

concentration and Ca2+-dependent. After 7 DIV, the rat cultured TGNs were incubated 

in BR-HBS with the addition of vehicle (see Chapter 2) for measurement of basal 

release (hollow bars), and then incubated in BR-HBS in the presence of varying 

concentrations of capsaicin (A) or bradykinin (B) for the determination of stimulated 

release (hatched bars). 1 µM capsaicin- or 0.01 or 0.1 µM bradykinin- stimulated 

release represents 20 or 15% of the total content, respectively. Likewise, Ca2+-

independent release was determined in Ca2+-free BR-HBS containing 2 mM EGTA. 

Values are the means ± S.D.; n = 4; student’s unpaired t-test: **, p<0.01; ***, 

p<0.001.  
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3.2.3.2 Crudely fractionated SP- and CGRP-containing LDCVs showed similar 

sedimentation velocity and contain SNAREs plus associated proteins 

TGs were dissected from ~35 P3-5 neonatal rats and homogenized (see Chapter 2); 

Microsomes were collected by ultracentrifugation and lysed in resuspension buffer. 

Vesicles were seperated by continuous sucrose gradient centrifugation according to 

their density (see Chapter 2).  Fractions (600 µl) were collected from the bottom to top 

of the centrifuge tube using a peristaltic pump.  Amounts of SP and CGRP in each 

fraction were quantified by EIA assay. The neuropeptides-enriched fractions are those 

with high ratio of peptides concentration relative to total protein concentrations (Fig. 

3.15 B). Theortically, SCSVs should be collected in later fractions than LDCVs 

because they have slower sedimentation. Fractions from no. 5-13 seemed to be 

enriched in SP (Fig. 3.15 A). The occurrence of both CGRP and SP in fractions 7-10 

suggests that at least some of the vesicles containing peptides have similar 

sedimentation behaviour; possibly, to some extent, both peptides reside in the same 

vesicles (Fig. 3.15 A, B). Notably, fractionated CGRP level was lower than that of SP; 

whereas in culture, CGRP was released at higher level than SP (Fig. 3.13). This finding 

is consistent with that NGF supplementation in culture upregulates CGRP expression 

(Price et al., 2005). Neurotansmitters in SCSVs fractions could not be detected because 

of lower content (see Section 3.2.3.3). 

The presence of SNAREs and synaptophysin were detected in the collected fractions 

by SDS-PAGE and Western blotting, using specific antibodies. Note that the Sbr III 

antibody used was also able to detect isoforms I and II but signals were weaker. It is 

deduced that synaptophysin, syntaxin I, SNAP-25 and three isoforms of Sbr are all 

present in the LDCVs fractions (Fig. 3.15 C).  
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Fig. 3.15 Crude separation of CGRP- and SP-containng LDCVs by sucrose gradient 

sedimentation. Microsomes prepared from TGs were lysed in resuspension buffer and 

layered on a 10-50% continuous sucrose gradient for centrifugation (detailed in 

Chapter 2). Fractions were collected and analysed for CGRP (pink) and SP (blue) by 

EIA as shown in (A); the protein concentration of each collected fraction was 

measured by BCA kit (A, yellow), and ratios % of neuropeptide content relative to 

protein concentration (pg/µg) was calculated and plotted in  (B). Presence of SNAP-25, 

syntaxin I, Sbr (I, II and III) and synaptophysin in fractions were confirmed by 

immunoblot analysis in (C) using specific antibodies against synaptophysin, syntaxin I, 

SNAP-25, Sbr I, II except for a pan antibody used for Sbr III which recogises all three 

isoforms but with different affinities.  

 66



3.2.3.3 Release of other transmitters  from TGNs 

Attempts were made to measure additional LDCV-contained transmitters such as NPY, 

VIP and serotonin by EIA, but their levels of stimulated release from rat cultured 

TGNs were under the detection limit. Table 3.1 shows the total cellular content of these 

neurotransmitters in 106 cells/well (plating number). It proved difficult to detect 

stimulated release of classic transmitters (such as glutamate, aspartate, GABA and 

glycine) from SCSVs by a radioisotopic method, using the same stimulation protocol 

as for CGRP exocytosis. In conclusion, CGRP and SP are the main transmitters 

released from cultured TGNs. 

 

Table 3.1 NPY, VIP and serotonin are present at low levels in rat cultured TGNs 

Neurotransmitters Total content (pg) / 106 cells* 

NPY ~5  

VIP ~20 

Serotonin ~10 

 
* ~106cells/well of dissociated TGNs were cultured for 7 DIV, solubilised in 2 M acetic 

acid/ 0.1% TFA followed by freeze/thaw thrice and high speed-vaccum drying. Cell 

pellets were dissolved in EIA buffer and contents of NPY, VIP and serotonin were 

measured using EIA (see Chapter 2). 

 

3.3 Discussion 

Deciphering the molecular details of transmitter release from sensory neurons has been 

neglected, despite its great importance in understanding the propagation of painful 

stimuli. Also, there is an urgent need for drugs with capabilities to control chronic pain, 

in a variety of clinical conditions (e.g. migraine, low back pain, tension headache) 

where existing drugs are not effective in all patients. Lack of progress with 

investigations is in part due to difficulties in obtaining adequate quantities of pain-

propagating cells for biochemical work. This problem was overcome herein by using 

cultured TGNs which were chosen because they comprise a major pain-relay centre, 

and their release of CGRP and SP is elevated in migraine (Durham and Russo, 1999; 

Liu et al., 2003). The model was validated by showing that TGNs maintained in culture 

retain the morphological and histochemical properties reported for sensory neurons in 

situ (Baccaglini and Hogan, 1983; Guo et al., 1999; Price et al., 2005), as well as an 
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ability to release peptidergic transmitters in a Ca2+-dependent manner in response to 

different stimuli. However, the proportion of neurons in the cultures staining positive 

for VR1 and CGRP is higher than those observed in sections of TG (Durham and Cady, 

2004; Price et al., 2005); such a difference has been attributed to their upregulation by 

NGF added to the culture medium (Durham and Cady, 2004). In fact, this can be 

viewed as making the TGN model more similar to the situation in migraine in which 

there is also an increase in the level of NGF (Durham and Cady, 2004).  Such elevation 

is known to be involved in the development of nociceptive sensitization in a number of 

pathological states; NGF raises the sensitivity of sensory neurons to capsaicin and 

enhances its stimulation of CGRP release from TGNs in vitro (Price et al., 2005). 

Likewise, NGF raises the response to bradykinin of capsaicin-sensitive small neurons 

cultured from rat dorsal root ganglia (Kasai et al., 1998). Virtually all of the neurons 

identified by fluorescence microscopy to contain CGRP also possessed SP. The higher 

resolution offered by confocal microscopy revealed that the intracellular distribution of 

both peptidergic transmitters overlapped but were distinct in some respects. For 

example, an area resembling the endoplasmic reticulum/ Golgi network showed dual 

staining; on the other hand, SP occurred along the plasmalemma whereas CGRP 

seemed to have a more diffuse but ‘vesicle-like’ distribution. The latter indicates that 

these two peptides do not reside in the same vesicles at least to some extent, in 

accordance with the report that CGRP occurs only in LDCVs whilst SP can also exist 

in smaller vesicles from spinal cord sensory neurons (De Biasi and Rustioni, 1988; 

O'Connor and van der Kooy, 1988). Sucrose gradient centrifugation further suggested 

CGRP and SP had a similar sedimentation pattern but with some dissimilarity 

indicating not all of them reside in the same vesicles.  

A prime objective of our investigation was to find agents capable of blocking the 

evoked release of CGRP because of its pivotal role as a pain mediator. This required 

firstly establishing the complement of SNAREs in these sensory neurons, and then 

identifying which isoforms are involved in their release from LDCVs, compared to 

those known to mediate exocytosis from SCSVs.  

For the first time, all 3 SNAREs and synaptotagmin I were visualised in the sensory 

neurons by confocal microscopy. Each displayed some characteristic distribution 

features. For example, syntaxin I staining gave a ‘cloud-like’ appearance throughout 

the soma together with more defined labelling in the bigger neurites; syntaxin II, III 

also gave a similar pattern in neuronal cell bodies and comparably weaker signals in 
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neurites, as revealed by conventional fluorescent microscopy. SNAP-25 showed a 

similar pattern but with intracellular punctate staining and definite labelling of the 

membrane of the cell bodies and major processes. Finally, similar pictures were 

obtained for the vesicular proteins, Sbr II and synaptotagmin I, which included intense 

and fairly uniform staining of the cell bodies as well as punctate deposition of stain on 

even the smallest neurites. Isoform I of Sbr was visualized predominantly on the cell 

bodies together with a distinctive punctate pattern of staining on the fine neurites. Most 

importantly, conventional microscopy demonstrated co-occurrence of each of the 

exocytotic proteins with CGRP, and images with high resolution revealed some 

similarities and differences in their subcellular locations. Puncate staining of Sbr I co-

localised with CGRP on the fine fibres; in the case of Sbr II and synaptotagmin I, there 

is a striking degree of co-localisation whereas the granular band of CGRP staining of 

Sbr isoform II differs from the more widespread distribution of synaptotagmin I in the 

cytoplasm and on the plasmalemma.  Notably, there is a differential intensity of the 

relative staining for SNAP-25 and CGRP in adjacent neurons. In summary, these 

sensory neurons possess several components of the exocytotic machinery though the 

requirement for each, or a particular isoform, had to be established by other means.  

 

A large increment of  Ca2+-dependent CGRP release could be evoked by all three 

stimuli tested, with a rank order of K+> capsaicin > bradykinin; the respective values 

represents 30, 20, and 15 % of the total content. These figures suggest that some 

stimulants can only trigger the release of a limited pool of transmitter, in keeping with 

different signalling pathways being involved. In this regard, it is notable that the 

quantities of CGRP release elicited by capsaicin or bradykinin relative to that for K+ 

depolarisation approximate to the respective proportions of the cultured cells shown to 

contain VR1 and BR2, which overlapped as assessed by immunofluorescence staining. 

SP release was also detected from rat cultured TGNs but at a lower level.  

Clearly, sensory peptidergic neurons cultured from rat TGs contain the exocytotic 

machinery and release CGRP in response to depolarization or pain stimuli. However, 

involvement of SNARE proteins, and particular isoforms, in Ca+-regulated CGRP 

release needs to be established by using BoNTs, which are known to cleave distinct 

SNARE substrates and inhibit transmitters release in a number of neuron types. In vitro, 

cultured TGNs with their highly desirable properties used in combination with 
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recombinant BoNT make it feasible to examine the basic mechanisms of pain 

transmission. 
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4.0 CGRP exocytosis from sensory neurons is SNARE-dependent and unique in 

requiring Sbr I: inhibition by BoNTs reflects their anti-nociceptive potential 
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4.1 Overview 

Although BoNTs have proved instrumental in demonstrating that all three SNAREs are 

essential for Ca2+-regulated exocytosis in a number of neuron types, this remains to be 

established for cultured TGNs. As stimulation of neurotransmitter release by K+, 

capsaicin and bradykinin relies on somewhat different signalling mechanisms and in 

the two latter cases, occur in sub-populations possessing VR1 or BR2, determining 

their susceptibilities to BoNT serotypes is a prerequisite for the attractive prospect of 

engineering a variant that could be targeted and, thus, preferentially inhibit CGRP 

secretion in certain varieties of sensory neurons. 

 

4.2 Results 

 

4.2.1 Truncation of SNAP-25 by BoNT/A gives distinct inhibition of CGRP release 

evoked by 3 stimuli 

TGNs were incubated overnight at 37°C with BoNT/A and Ca2+-dependent CGRP 

secretion was measured in response to different stimuli, before the same cells were 

solubilised and subjected to SDS-PAGE and Western blotting of the SNAREs.  SNAP-

25 was detected with an antibody exhibiting equal reactivity with both the intact and 

the toxin-truncated SNARE (Fig. 4.1 A).  Increasing BoNT/A concentrations cleaved 

SNAP-25 as reflected by appearance of a faster-migrating product, giving an EC50 = 

0.3 nM derived from densitometric scanning of 5 replicate gels (Fig. 4.1 B). Only trace 

amounts of the BoNT/A-resistant homologue, SNAP-23, could be visualised (Fig. 4.1 

C). K+-evoked CGRP release was inhibited by BoNT/A with a concentration 

dependence identical to that for SNAP-25 cleavage (Fig. 4.1 B).  By contrast, it proved 

less potent in blocking exocytosis elicited by bradykinin (Fig. 4.1 B).  The CGRP 

release elicited by 1µM capsaicin was least susceptible to BoNT/A, with only ~ 15% 

reduction seen even at 100 nM toxin (Fig. 4.1 B); this minimal sensitivity is not 

attributable to lack of the receptors on these particular neurons because synaptic vesicle 

protein 2A, B and C were detected in VR1-positive cells (Fig. 4.1 D; see Discussion). 

Morever, K+-evoked SP release, assayed in an aliquot of the sample used for measuring 

CGRP release, was also blocked by BoNT/A (Fig. 4.1 B inset). Such disparate 

BoNT/A susceptibilities of neuro-exocytosis triggered by various stimuli differ from 

the rank order observed for type D (see later).  
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Fig. 4.1. BoNT/A cleaves SNAP-25 and differentially inhibits Ca2+-dependent CGRP 

release evoked from rat TGNs by three stimuli: the toxin’s acceptors occur on VR1-

positive cells. TGNs were exposed to BoNT/A, release of CGRP over 30 minutes 

assayed; then the cells were solubilized in LDS-sample buffer and equal volumes 

subjected to SDS-PAGE and Western blotting, using an antibody that recognises intact 

and truncated SNAP-25. The proportion of substrate remaining was calculated relative 

to an internal syntaxin control, using digital images of the gels.  (A) Immunoblot 

showing the cleavage by the neurotoxin of SNAP-25 but not syntaxin I. (B). Dose 

response curvse for BoNT/A-induced blockade of CGRP release evoked by 60 mM K+ 

( ) which correlates with the % of SNAP-25 remaining (▼). Lesser extents of 

inhibition by BoNT/A were observed for release evoked by 0.1 µM bradykinin (▲) and, 

especially, 1 µM capsaicin ( ). Data plotted are means ± s.e.m.; n = 5. Inset shows 

inhibition of 60 mM K+-evoked SP release by 0.1 nM BoNT/A (data plotted are means 

± s.e.m.; n = 3). Note, there was no detectable SP release evoked by 60 mM K+ after 

treatment with 1 nM.  (C) A Western blot of TGNs visualised with antibodies specific 

for syntaxin I or SNAP-23 (*). (D) Representative micrographs demonstrating VR1 and 

SV2A, B and C in rat TGNs.  Fluorescent images were obtained after labelling the cells 

with antibodies raised in guinea pig specific for VR 1 (1:1000) and in rabbit for SV2A 

or SV2B (1:1000) or in goat for SV2C (1:100).  The controls were treated similarly 

except in the absence of primary antibodies but incubated with fluorescently-labelled 

secondary IgGs against rabbit (goat anti-rabbit Alexa Fluor-546, 1:200) and guinea 

pig (goat anti-guinea pig Alexa Fluor-488, 1:200) (1) or goat (donkey anti-goat Cy3, 

1:800) and guinea pig (donkey anti-guinea pig Cy2, 1:200) (2). Scale bars are 20 µm. 

It is noteworthy that all the SV2 isoforms are present in VR1-positive neurons. 
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4.2.2 Limited cleavage of syntaxin I and SNAP-25 by BoNT/C1 partially blocks 

exocytosis induced by all the stimuli  

 Incubation of TGNs with BoNT/C1 (under the conditions outlined above for BoNT/A) 

resulted in partial cleavage of syntaxins IA and/or IB as indicated by the decreased 

intensities on the Western blots, stained with a monoclonal antibody reactive with both 

isoforms of intact syntaxin I which were not resolved (Fig. 4.2 A).  Moreover, the toxin 

also truncated SNAP-25 (Fig. 4.2 A); the dose-response curves, derived from analysis 

of several blots, are similar for the toxin’s partial cleavage of both substrates (Fig. 4.2 

B). BoNT/C1 caused a minimal reduction in CGRP exocytosis and with little 

discrimination between the stimuli used (Fig. 4.2 C). Syntaxin II, III and IV (not shown) 

were also detected in TGNs by Western blotting but only isoforms II and III are 

BoNT/C1 sensitive (Schiavo et al., 1995); the limited cleavage  was accentuated by the 

toxin’s limited uptake, as reflected in the partial inhibition of CGRP release (Fig. 4.2). 

Although the function of these syntaxin isoforms in CGRP exocytosis is not clear, the 

presence of SNARE complexes containing either isoform II or III with SNAP-25, Sbr I 

or II were demonstrated by co-immunoprecipitation of detergent soluabilized lysate of 

rat TGNs (Fig. 4.3). Sbr isoforms could be detected after their release from the 

complexes by boiling; SNAP-25 signal was stronger than that for non-boiled samples. 

The simplest interpretations of these results are that the native BoNT/C1 has low 

potentcy or this toxin only enters a fraction of the responsive neurons or all the cells 

with poor efficiency; the contribution of its cleavage of syntaxin I to CGRP inhibition 

could not be determined because SNAP-25 also gets truncated. 
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Fig 4.2 BoNT/C1 incompletely cleaves SNAP-25 and syntaxin I, and partially 

inhibits Ca2+-dependent CGRP release evoked by three stimuli. TGNs at 7 DIV were 

treated with BoNT/C1, release of CGRP was assayed and Western blotting performed. 

Results were calculated as described in Fig. 4.1 A, B but relative to the Sbr I/II control. 

(A) Partial cleavage of SNAP-25 by BoNT/C1 shown with the IgG used in Fig. 4.1, and 

decrease in syntaxin I revealed with an antibody only reactive with this intact SNARE. 

Syntaxin II, and especially III, proved difficult to quantify and, thus, cleavage by toxin 

was not detectable. (B) Dose response curves for BoNT/C1-induced cleavage of SNAP-

25 (▼) and syntaxin I (▲).  (C) Inhibition by toxin of CGRP release evoked by 60 mM 

K+ ( ), 0.1 µM bradykinin ( ) or 1 µM capsaicin ( ). Data plotted are means ± 

s.e.m.; n ≥ 3. 
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Fig. 4.3 Syntaxin II and III complexes with SNAP-25, Sbr I or II in TGNs. The 

pelleted cells were extracted in 1 ml of buffer containing 1% (v/v) triton X-100 (see 

Chapter 2) for 1 hour at 4°C, followed by a centrifugation. The supernatant was 

incubated at 4°C overnight with anti-syntaxin II or III IgG (as used in Fig. 4.2) 

coupled to protein A-agarose.  After sedimentation and extensive washing with the 

extraction buffer, the beads were suspended in 2xLDS sample buffer for SDS-PAGE (± 

boiling for 10 minutes) under non-reducing conditions, followed by Western blotting 

using antibodies specific for each SNARE. Note, excessive staining of the rabbit IgG 

overlapped with the SNARE complexes on the top halves of gels; however, multiple 

bands were shown in boiled samples in contrast to the one major broad band before 

boiling, indicating the the complex was dissociated; free Sbr isoforms were only 

detected in the boiled samples. Free SNARE proteins are indicated by arrow heads. 
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4.2.3 BoNT/D cleaves all Sbr isoforms and inhibits CGRP release: the importance 

of Sbr I is unveiled by BoNT/B-induced blockade of exocytosis from mouse but 

not rat TGNs even though they possess its acceptor  

TGNs were treated with BoNT/D as above, before visualising Sbr isoforms on Western 

blots with specific antibodies. Increasing concentrations of BoNT/D gave a progressive 

reduction in the staining for Sbr II or Sbr I and Sbr III bands (Fig. 4.4 A), indicative of 

their cleavage.  When Sbr II or Sbr I were individually labelled with isoform-specific 

antibodies, and the averaged intensities of each band normalised to an internal control 

(SNAP-25), the resultant plots (Fig. 4.4 B) demonstrated that BoNT/D cleaves Sbr I 

somewhat more effectively than Sbr II (EC50 = 3.6 and 14.6 nM, respectively). Such 

treatment of the cells with BoNT/D blocked K+- and capsaicin-evoked CGRP release 

(Fig. 4.4 B, C); the dose-dependence for K+-evoked CGRP release  is very close to that 

for Sbr I cleavage.  Likewise, CGRP exocytosis elicited by bradykinin was reduced by 

the toxin but with a lower potency (Fig. 4.4 C).  This differential inhibition of evoked 

release may relate to distinct BoNT/D susceptibilities of sensory neuron populations 

that respond to capsaicin or bradykinin. Basal efflux was also decreased (Fig. 4.4 C 

inset), as found with this toxin in other neurons (Hua et al., 1998).  Notably, BoNT/D 

also blocked K+-evoked SP release from rat cultured TGNs (Fig. 4.4 B inset).  

In order to exclude that BoNT/D-induced diminution of CGRP exocytosis is due to 

death of TGNs, a short time course study was performed. Rat cultured TGNs were 

incubated with or without 10 nM BoNT/D or /B for 24 hours. Toxins were washed 

away, and cells were tested immediately or fresh medium was replaced and cells were 

maintained for the time indicated. There was no observable difference in the levels of 

SNAP-25 and syntaxin I in control cells and these were not reduced by day 6, 

indicating no toxin-induced cell death (Fig. 4.5).  K+-evoked CGRP release was 

inhibited by BoNT/D at day 1, 3, and 6, but there was no drop in the total cellular 

content of CGRP over time (the increase in CGRP total content in BoNT/D treated 

cells may be caused by the accumulation of CGRP intracellularly due to the blockade 

of release), confirming BoNT/D-induced CGRP inhibition is directly caused by 

proteolysis of Sbr isoforms. In contrast, BoNT/B failed to give any inhibition even 

though it decreased the total immuno-signals for Sbr I and Sbr II.  

It was necessary to ascertain if cleavage of one or more isoforms of Sbr is required for 

the blockade of exocytosis.  Involvement of Sbr II was addressed using BoNT/B (Fig. 

4.6 A) because it does not cleave Sbr I in rat  (Schiavo et al., 1992).  Incubation of the 
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TGNs with BoNT/B decreased the intensity of Sbr II and III bands (Sbr I remained 

unchanged consistent with it being resistant) that were detected with the broad 

specificity HV-62 antibody (Fig. 4.6 A). Notably, the mAb specific for Sbr II showed a 

more complete cleavage of this isoform compared with HV-62 because the latter would 

have labelled the persisting BoNT/B–resistant Sbr I (Fig. 4.6 A). Despite this extensive 

cleavage of Sbr II and III, BoNT/B failed to inhibit K+-evoked CGRP release (Fig. 4.6 

B). Likewise, K+-evoked SP release from rat cultured TGNs was not affected by 

BoNT/B treatment (Data not shown). The possibility of BoNT/B-resistant release 

occurring from a sub-population of neurons that are unable to bind and internalize this 

toxin seems unlikely because of the complete cleavage of Sbr II observed (unless they 

lack Sbr II). Moreover – synaptotagmin I and II – the toxin’s acceptor, were detected in 

all TGNs containing CGRP (Fig. 4.6 E).  Thus, the lack of blockade of CGRP release 

by BoNT/B raised the question whether the insensitive Sbr isoform I is involved; this 

idea was reinforced by the co-occurrence of Sbr I and CGRP on the cell bodies and, 

particularly, their striking punctate location on the neurites (Fig. 3.11 A).  As murine 

Sbr I is susceptible to BoNT/B, experiments were repeated with TGNs prepared from 

P5 mice; the resultant cultured cells displayed similar morphology and purity (Fig 3.1 

B).  Importantly, type B toxin caused a pronounced inhibition of K+-elicited CGRP 

release from the mouse TGNs (Fig. 4.6 D) similar to seen with BoNT/D although 

higher doses were required (Fig. 4.6 D inset); moreover, capsaicin-evoked CGRP 

release was inhibited. Accordingly, BoNT/B cleaved Sbr I in mouse TGNs as revealed 

by the concentration-dependent reduction in labelling with an antibody exclusively 

reactive with this isoform (Fig. 4.6 C, D). Therefore, it is reasonable to deduce that 

CGRP release from LDCVs can utilise Sbr I.   
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Fig. 4.4 BoNT/D blocks evoked Ca2+-dependent CGRP release and cleaves 3 Sbr 

isoforms. The amounts of Ca2+-dependent basal and evoked release of CGRP for each 

stimulus were measured in cells treated with BoNT/D as in Fig. 4.1 (A). Three Sbr 

isoforms were detected using antibodies against Sbr I, or Sbr II, or Sbr I, II and III 

together (HV-62); isoform I and II co-migrate. (B) Dose response curves for the 

remaining intact Sbr II (▼) and Sbr I (∆), and for inhibition of release evoked by 60 

mM K+ ( ). Inset shows dose-dependent inhibition of K+-evoked SP release by 

BoNT/D ( ); (C) Dose response curves for inhibition of release evoked by 1 µM 

capsaicin ( ) or 0.1 µM bradykinin (▲). Inset shows the reduction of basal release 

by BoNT/D ( ). The values plotted are means ± s.e.m.; n = 8 except inset in B; n = 2 

performed in duplicates. 
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Fig. 4.5 The time course of BoNT/D-induced inhibition of K+-evoked Ca2+-dependent 

CGRP release implicates cleavage of its substrates rather than cell death. Rat 

cultured TGNs at 7 DIV were incubated in culture medium with 10 nM BoNT/D or /B 

for 24 hours. After removal of toxins by washing, the neurons were tested immediately 

(day 1) or the medium was replaced. Cells at day 3 and 6 were analyzed as described 

in Fig. 4.1. Released and cellular CGRP contents were assayed by EIA. (A) Sbr 

isoforms I and II were detected using HV-62 antibody (I and II co-migrated). BoNT/D 

cleaved both isoforms at all time points, whereas, BoNT/B only cleaved Sbr II (cf Fig. 

4.6); the latter caused lesser reduction in total signal for isoforms I and II. (B) BoNT/D 

blocked K+-evoked CGRP release, whereas, BoNT/B proved ineffective (cf.  Fig. 4.6). 

(C) Intracellular CGRP content relative to that of equivalent toxin-free control (filled 

bars) remained unchanged after expose to BoNT/B (hatched bars) but was increased 

by BoNT/D (open bars). Data plotted are average from n = 2 performed in duplicates.  
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Fig. 4.6 BoNT/B proteolyses Sbr II and III in rat TGNs but does not reduce K+- 

evoked CGRP release despite the presence of its receptor: in mouse TGNs, Sbr I is 

also cleaved and exocytosis blocked.  TGNs were cultured from rat (A, B, E) and 

mouse (C, D) for 7 DIV before exposure to BoNT/B; EIA of released CGRP and 

Western blotting were carried out as described in Fig. 4.1. Results presented are 

means ± s.e.m.; n = 8. (A, C) Immuno-blots showing the disappearance of 2 Sbr 

isoforms for rat (Sbr II and III) and 3 for mouse (Sbr I, II and III) relative to the 

internal standard (SNAP-25) that remained unchanged. (B, D) Dose response curves 

for inhibition of CGRP release evoked by 60 mM K+ ( ), capsaicin ( ) and remaining 

Sbr II (▼), Sbr I and II (▲), and Sbr I ( ). Inset illustrates the inhibition by BoNT/D 

of K+-evoked CGRP release from mouse TGNs, for comparison.  (E) Representative 

fluorescent micrographs showing that the putative protein receptors of BoNT/B, 

synaptotagmin I and II, are present in CGRP positive neurons. Specimens were stained 

using rabbit anti-CGRP (1:500) (and donkey anti-rabbit IgG Cy2, 1:200) and goat 

anti-synaptotagmin I/II (1:100) (and donkey anti-goat IgG Cy3, 1:800). The control 

was treated in the absence of primary antibodies but incubated with secondary 

fluorescently-labelled IgGs against goat and rabbit. Scale bars are 20 µm.  
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4.2.4 Pre-incubation of rat cultured TGNs with BoNT/D but not BoNT/B inhibits 

BoNT/A binding/uptake  

Previous studies reported that incubation with BoNT/A in K+ depolarization buffer 

results in increased cleavage of SNAP-25 by /A in various cultured neuronal cells 

because this toxin’s acceptor, SV2 isoforms, are located on secretory vesicles and the 

luminal domains for BoNT/A binding are only exposed to the extracellular domain 

during exocytosis (Dong et al., 2006), indicating BoNT/A uptake occurs in an activity-

dependent manner. Consistent with this, K+ depolarization significantly increased 

uptake of BoNT/A into TGNs (Fig. 4.7 A). Because BoNT/D cleaved all three Sbr 

isoforms and inhibited CGRP exocytosis in rat cultured TGNs, the toxin might be 

expected to inhibit BoNT/A uptake; on the other hand, BoNT/B was unable to cleave 

rat Sbr I and failed to inhibit CGRP exocytosis from LDCVs and should, thus, allow 

BoNT/A binding to the luminal domain of SV2 proteins during exocytosis. Therefore, 

it was important to determine whether cleavage by BoNT/B of Sbr II and Sbr III, the 

SNARE which normally mediate classical transmitters release, will inhibit BoNT/A 

internalization. To address this question, rat cultured TGNs were pre-treated with 50 

nM BoNT/B or /D for 24 hours to allow cleavage of their substrates. After removal of 

the toxins by washing, the neurons were exposed to 50 nM BoNT/A in depolarization 

buffer for 5 mins. Unbound toxin was removed by washing with pre-warmed culture 

medium , and the cells were maintained in culture medium for 24 hours to allow 

internalized BoNT/A to cleave SNAP-25. The extent of BoNT/A binding/uptake was 

reflected by the observed cleavage of SNAP-25. Immunoblots demonstrated that both 

BoNT/B and BoNT/D cleaved Sbr II to similar extent (Fig. 4.7 B, C); however, pre-

treatment of BoNT/B only slightly reduced BoNT/A binding to rat TGNs because 60% 

of SNAP-25 became cleaved which is very similar to that for treatment with BoNT/A 

only. In constrast, pre-treatment with BoNT/D significantly inhibited BoNT/A uptake, 

as reflected by only ~15% SNAP-25 cleavage (Fig. 4.7 C). Negligible inhibition of 

BoNT/A binding by BoNT/B might implicate there are very small amounts of SCSVs 

in rat cultured TGNs or Sbr I is also presents in SCSVs and mediates SCSVs recycling. 

It can be deduced that binding of BoNT/A to the luminal domain of SV2 proteins must 

be significantly reduced due to the impaired exocytosis induced by /D; BoNT/A uptake 

remained almost unaltered after /B treatment because the latter failed to prevent vesicle 

recycling even though it cleaved Sbr II and Sbr III (Fig. 4.6). Our results suggest that 

Sbr II or III are somewhat redundant in CGRP release from rat TGNs. 
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Fig. 4.7 SNAP-25 cleavage by BoNT/A upon depolarization of rat cultured TGNs 

was significantly reduced by pre-treatment with BoNT/D but not /B. Rat cultured 

TGNs at 7 DIV were pretreated with 50 nM BoNT/B or /D for 24 hours. The washed 

cells were then exposed to 50 nM BoNT/A for 5 minutes in 60 mM K+ depolarization 

buffer. After removal of unbound toxin by pre-warmed culture medium, the latter was 

replaced and cells were further incubated for 24 hours at 37°C to allow internalized 

BoNT/A to cleave SNAP-25.  Cells were then solubilized in 2xLDS sample buffer and 

subject to SDS-PAGE and Western blotting. The proportion of remaining substrate was 

calculated relative to an internal uncleaved syntaxin I control. (A) SNAP-25 cleavage 

were demonstrated from samples that  treated by BoNT/A for 5 minutes in K+ 

depolarization buffer (HK) or basal buffer (LK) followed by 24 hours of incubation in 

toxin-free medium; (B) Representative immunoblot showing the similar extent of 

cleavage of Sbr II by BoNT/B and /D; SNAP-25 cleavage by BoNT/A after pre-

treatment with BoNT/B is only slightly less than that for BoNT/A alone, whereas pre-

exposure to BoNT/D significantly reduced SNAP-25 cleavage by BoNT/A. (C) 

Percentage of intact SNAP-25 (open bar) or Sbr II (filled bar) remaining, calculated 

relative to parallel toxin-free control after scanning of 3 blots from 3 independent 

experiments.  
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4.2.5 Novel BoNT chimeras AB and BA generated with ability to block pain-

peptide release reaffirm the involvement of Sbr I in CGRP exocytosis 

 

4.2.5.1 Designs of BoNT chimeras AB (LC-HN/A-HC/B) and BA (LC-HN/B-HC/A) 

To further confirm that the lack of inhibition by BoNT/B of CGRP release in rat is not 

due to its failure to bind TGNs but because of its inability to cleave Sbr I, I designed 

two novel chimeras AB and BA. Chimera AB comprises the LC-HN domains from 

BoNT/A (LC-HN/A) fused to the binding domain of BoNT/B (HC/B) to ascertain 

whether a /B-receptor exsists on rat TGNs by determining of SNAP-25 cleavage could 

be detected by its delivered /A protease activity. Likewise, the LC-HN domains from 

BoNT/B were fused to HC/A to address if Sbr I cleavage occurred when the protease of 

/B was delivered via the known /A-acceptor. A schematic of the toxin’s design strategy 

is shown in Fig. 4.8.   

 

4.2.5.2 Generation of chimera AB and BA 

Construction, expression and purification of chimera AB and BA were performed by 

Dr Wang J (our unpublished data). Briefly, chimera AB and BA were expressed in E. 

coli BL21 (DE3) and purified as SC polypeptides that upon SDS-PAGE migrated as 

Mr~150 k bands, in either the absence or presence of the reducing agent DTT (Fig. 4.9 

A). Controlled nicking of chimera AB with Trypzean gave near-complete conversion 

of the SC to disulphide-linked DC, as demonstrated by the appearance of HC and LC 

upon SDS-PAGE in the prescence of DTT; continued migration at ~150 k (Fig. 4.9 A) 

in the absence of DTT indicates that the inter-chain disulphide was formed in virtually 

all of the DC. Likewise, chimera BA was also successfully converted from SC to DC 

form by incubation with thrombin (Fig. 4.9 B). Western blotting with antibodies 

against LCA, BoNT/A or BoNT/B demonstrated the expected domains from each 

parental toxin were incorported into chimera AB and BA. 
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TrypzeanTrypzean

 
 

 

Fig. 4.8 Design strategy for chimera AB and BA. (A) Chimera AB SC gene comprises 

LC and HN gene fragments from BoNT/A fused to binding domain from BoNT/B. 

Likewise, LC-HN/B was fused to HC/A to generate chimera BA transgene (B). The 

nicking sites are indicated with ( ). 
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Fig. 4.9 Expressed chimera AB and BA toxins. The purified chimera AB (A) and BA 

(B) SCs  which were subsequently converted to DC forms by controlled nicking (see 

Chapter 2; the gels were provideded by Dr Wang J) before SDS-PAGE in the absence 

or presence of DTT (as indicated), followed by Coomassie protein staining or Western 

blotting (WB) with the antibodies specified.  
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4.2.5.3 Chimera AB and BoNT/A equi-potently cleaved SNAP-25 whereas BA 

cleaved Sbr II to a similar extent as BoNT/B in cultured CGNs: chimeras exhibit 

protease activity of their parents 

CGNs are a useful model of central nerves for evaluating potency of BoNT due to their 

ease of preparation, with large yield and high sensitivity to the toxins. Cultured CGNs 

at 7 DIV were incubated with chimeric toxins AB and BA, as well as their parental 

toxins BoNT/A and /B for 24 hours (Fig. 4.10). Dose response curves for SNAP-25 

cleavage by BoNT/A and chimera AB overlapped, indicating both toxins have similar 

potency (Fig. 4.10 A). Moreover, Sbr II cleavage by chimera BA is similar to that by 

native BoNT/B (Fig. 4.10 B). Thus, changing the binding domains does not affect their 

potency for SNARE cleavage in rat cultured CGNs. 
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g. 4.10 The potencies in cultured CGNs of chimera AB and BA in cleaving their 

spective substrates are similar to that of their parental toxins containing the same 

otease. CGNs at 7 DIV were incubated with toxins for 24 hours in culture medium 

th the specified concentrations. After removal of toxins by washing, cells were then 

lubilized in 200 µl 2xLDS-sample buffer and equal volume of protein subjected to 

S-PAGE and Western blotting. The proportion of remaining substrate was 

lculated relative to an internal un-cleaved syntaxin control. (A, B) Dose response 

rves for remaining intact SNAP-25 (A) or Sbr II (B) after treatment with BoNT/A 

), chimera AB ( ), BoNT/B ( ) or chimera BA ( ). Data plotted are means ± 

.m.; n=3. 
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4.2.5.4 Inhibition of CGRP release by chimera AB demonstrated the presence of 

acceptors for BoNT/B in rat cultured TGNs: lack of inhibition of CGRP 

exocytosis by chimera BA accords with BoNT/B-resistant Sbr being required 

Rat cultured TGNs were incubated with chimera AB, BA, BoNT/A or BoNT/B in 

culture medium for 24 hours at 37°C and K+-evoked Ca2+-dependent. CGRP release 

was measured, before the same cells were subjected to SDS-PAGE and Western 

blotting. Chimera AB gave dose-dependent cleavage of SNAP-25 and inhibition of K+-

evoked CGRP release (Fig. 4.11 A, B). Notablly, 100 nM of chimera AB gave the 

same inhibition of CGRP release as BoNT/A (Fig. 4.11 B). Due to chimera AB having 

the binding domain from BoNT/B, it seemed rat TGNs contains a functional BoNT/B 

receptor which led to intracellular delivery of the /A protease giving the cleavage of 

SNAP-25 (Fig. 4.11 A). In contrast, 100 nM chimera BA nearly cleaved all of Sbr II 

whereas Sbr I is resistant (Fig. 4.11 C);  however, chimera BA did not inhibit K+-

evoked CGRP release from rat TGNs just like BoNT/B (Fig. 4.11 D). This further 

demonstrated the inability of BoNT/B to inhibit CGRP release is not due to BoNT/B 

being unable to enter the cells becase chimera BA also failed to give any inhibtion even 

though it was targeted to BoNT/A-susceptible neurons. Clearly, lack of inhibition of 

CGRP release is due to a lack of cleavage of rat Sbr I by type B toxins (chimera BA 

and BoNT/B).  

 

4.2.5.5 Chimera AB- and BA-induced inhibition of CGRP exocytosis from mouse 

TGNs correlates with the cleavage of their respective substrates: SNAP-25 and 

Sbr I  

Mouse cultured TGNs at 7 DIV were incubated overnight at 37°C with various 

concentrations of chimera AB and BA and Ca2+-dependent CGRP release was 

measured. K+-evoked CGRP release was inhibited by chimera AB with a concentration 

dependence identical to that for SNAP-25 cleavage. In comparison with its parental 

toxin BoNT/B, inhibition by chimera AB is much more effective even though they 

share same binding domain (Fig. 4.12 A, B; cf. Fig. 4.6). Increasing concentration of 

chimera BA gave a progressive cleavage of Sbr I (Fig. 4.12 C, D), as revealed by 

Western blotting with isoform-specific antibodies. The dose-response curves derived 

from analysis of several blots demonstrated that chimera BA dose-dependently cleaved 

Sbr I and induced inhibition of K+-evoked CGRP release (Fig. 4.12 C, D).  
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Fig. 4.11 Chimera AB cleaves SNAP-25 and inhibits K+-evoked CGRP release from 

rat TGNs to a similar extent as BoNT/A; in contrast, BA gives no inhibition, just like 

BoNT/B, though both cleave Sbr II. Rat cultured TGNs at 7 DIV were exposed to 

chimera AB or BoNT/A (A, B), or chimera BA or BoNT/B (C, D) at 37°C for 24 hours.  

CGRP release was assayed and the cells were solubilised in 2xLDS sample buffer for 

SDS-PAGE and Western blotting. Immunoblots illustrate the cleavage of SNAP-25 (A) 

or Sbr II (C) by the toxins treatment and the effects on (B, D) K+-evoked CGRP release. 

Data plotted are means±s.e.m.; n=3. 
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Fig. 4.12 Chimera AB potently cleaves SNAP-25 and inhibits K+-evoked CGRP 

release from mouse cultured TGNs whereas BA incompletely cleaves Sbr I and 

partially blocks CGRP release. Mouse cultured TGNs at 7 DIV were exposed to 

various concentrations of chimera AB or BA at 37°C in culture medium for 24 hours. 

K+-evoked CGRP release was assayed, Western blotting performed and results 

calculated (see Fig. 4.1). (A, C) Immunoblots illustrate the cleavage of SNAP-25 by 

chimera AB, or Sbr I by chimera BA. (B, D) Dose response curves for chimera AB- or 

BA-induced inhibition of K+-evoked CGRP release ( ) correlate with remaining intact 

(B) SNAP-25 ( ), or (D) Sbr I ( ), respectively. Data plotted are means±s.e.m.; n=3. 
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4.2.6 CGRP–containing vesicles possess Sbr I and II: each can form a separate 

SNARE complex 

 

4.2.6.1 Immuno-isolation of CGRP containing vesicles  

BoNT/B- or chimera BA-induced cleavage of Sbr II (and III) in rat TGNs failed to 

reduce K+-evoked CGRP exocytosis, whereas the additional cleavage of Sbr I in the 

mouse neurons resulted in blockade. This indicates that isoform I can mediate 

exocytosis from these peptidergic LDCVs.  Evidence to support this hypothesis was 

obtained by precipitating vesicles including CGRP- containing LDCVs from a TGN 

lysate with IgG that is known to be exclusively reactive with Sbr I (Fig. 4.4 A). The 

resultant vesicles were found to be enriched in CGRP (Fig. 4.13 A) relative to the level 

observed in the control (prepared with non-immune IgG beads).  Moreover, analysis of 

these isolated vesicles by SDS-PAGE and Western blotting revealed the expected 

presence of Sbr I which was absent from the control (Fig. 4.13 B). Notably, the 

immuno-isolated vesicles also contained isoform II (Fig. 4.13 B). Clearly, Sbr II co-

exists with isoform I on CGRP-containing vesicles because both were found in the 

immuno-isolates irrespective of whether IgGs specific for Sbr II (Fig. 4.13) or I  were 

used.  This is in agreement with our eailer findings that Sbr I and II are present in the 

fractionated SP- or CGRP- containing vesicles (cf. Fig. 3.15). 
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Fig. 4.13 Immuno-absorption of vesicles from TGNs by antibodies against Sbr I and 

II. Equal amounts of the total membrane fraction from lysed TGNs were incubated 

overnight at 4°C with protein A-agarose coupled to IgGs specific for Sbr I or II, or 

rabbit non-immune IgG (control).  After extensive washing, equivalent aliquots of the 

beads were sedimented and pellets dissolved in LDS sample buffer for SDS-PAGE and 

Western blotting, as in Fig. 4.3. Alternatively, 2M acetic acid with 0.1% TFA was 

added to replicate samples for CGRP determination. (A) CGRP contents (± s.e.m.) 

measured in two separate preparations show the large enrichment in vesicles obtained 

using beads containing Sbr I or Sbr II relative to the control.  (B) Western blots of the 

two vesicle preparations and the control, using antibodies specific for Sbr I or II. 
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4.2.6.2 Immuno-precipitation of SNARE complexes  

The functionality of Sbr I in these vesicles was confirmed by its demonstrated presence 

in characteristic SDS-resistant SNARE complexes separated from an extract of TGNs, 

in non-denaturing detergent with IgG specific for Sbr I, coupled to protein A beads.  

The sedimented proteins were solubilized in LDS sample buffer, subjected to SDS-

PAGE and Western blotting. One aliquot of each sample was boiled before the analysis. 

A sensitive protein reagent (Sypro-ruby) stained a major broad band of complexes 

(Mr>100 k) before boiling. Boiling reduced the amount of apparent intact complexes 

and resulted in additional lower molecular weight bands (Fig. 4.14 A). Immunblots of 

the samples before boiling, with antibodies specific for SNAP-25 or syntaxin I, 

visualised a broad band corresponding to the main SNARE complexes (Mr  > 100 k); 

much lower levels of these free constituents were present (Fig. 4.14 B).  Boiling raised 

the proportions of dissociated SNAP-25 and syntaxin I whilst decreasing the relative 

amounts of the complex, although substantial protein remained (Fig. 4.14 B). As 

expected, some free Sbr I was found in the unheated sample but its level increased after 

boiling (Fig. 4.14 B); this accords with the corresponding decreased intensity of the 

major immuno-reactive protein complexes (Mr > 100 k) upon boiling (cf. Fig. 4.14 A). 

Notably, Sbr II could not be detected in the non-boiled or boiled samples (Fig. 4.14 B). 

In conclusion, the collective evidence presented here suggests, for the first time, that 

Sbr I can mediate regulated CGRP exocytosis from TGNs. 
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Fig. 4.14 Sbr I complexes with SNAP-25 and syntaxin I in TGNs. The pelleted cells 

were extracted in 1 ml of buffer containing 1% (v/v) Triton X-100 (see Chapter 2) for 1 

hour at 4°C, followed by centrifugation. The supernatant was incubated at 4°C 

overnight with anti-Sbr I IgG coupled to protein A-agarose.  After sedimentation and 

extensive washing with the extraction buffer, beads were suspended in LDS sample 

buffer for SDS-PAGE (with and without boiling for 10 minutes) under non-reducing 

conditions, followed by Sypro-ruby staining  (A) or  Western blotting using antibodies 

specific for each SNARE (B). Only the lower halves of the gels blotted for Sbr I or II 

are shown because of excessive staining of the rabbit IgG that overlapped the SNARE 

complex. Note that boiling raised the proportion of dissociated SNAP-25, syntaxin I 

and Sbr I; this corresponds to the decrease in the complex. 
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4.2.7 Sbr I requirement in CGRP release also applies to other types of sensory 

neurons, such as DRGs 

Various BoNTs are known to be effective in cleaving their substrates and inhibiting SP 

release from cultured rat embryonic DRGs (Welch et al., 2000), whereas BoNT/B did 

not give significant inhibition though it cleaved its substrate Sbr II.  

Considering the dramatic co-localization of CGRP and SP in sensory neurons and 

reported co-release of both peptides from LDCVs [our results described earlier and 

(Skofitsch and Jacobowitz, 1985)], it was necessary to establish whether the CGRP 

released from DRGs is also mediated by Sbr I.  

 

4.2.7.1 Phase contrast microscopy of DRGs showing their similar morphology to 

TGNs 

DRG neurons were successfully maintained in culture using the methods described 

(Chapter 2). Similar to cultured TGNs, 24 hours after plating cells start to develop 

neurites, and after 7 days in medium supplemented with Ara-C and NGF DRG 

neuronal cells became enriched and formed an extensive neurite network (Fig. 4.15).  

 

4.2.7.2 BoNT/B inhibited K+-evoked CGRP exocytosis from mouse but not rat 

cultured DRG neurons whereas BoNT/D blocked release from both implicating 

Sbr I in CGRP release  

K+-evoked CGRP release was monitored from rat cultured DRG neurons at 7DIV, and 

its release was found to be significantly inhibited by 100 nM BoNT/D but not by /B 

(Fig. 4.16 A); in constrast, both of these toxins could inhibit CGRP release from mouse 

DRG neurons (Fig. 4.16 B). This is consistent with what we found in TGNs, which 

indicated that Sbr I may be essential for other CGRP releasing sensory neurons.  
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Fig. 4.15 Representative phase contrast micrograph of rat cultured DRGs at 7 DIV. 

Rat DRGs were dissected from P5 rats, dissociated and cultured following the 

procedures as described in Chapter 2. Image was taken at 7 DIV with an inverted 

microscopy in phase contrast mode. At 7 DIV neurites were well developed and 

neuronal cells enriched. Scale bar = 20µm. 
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Fig. 4.16 BoNT/D but not /B inhibited K+-evoked CGRP release from rat cultured 

DRG cells, whereas both blocked release from mouse DRG neurons. DRGs were 

dissected from P5 Wistar rats (A) and TO mice (B), dissociated and cultured 

(described in Matherials and Methods). DRG neurons at 7 DIV were exposed to 100 

nM BoNT/D or /B in culture medium for 24 hours at 37°C; 60mM K+-evoked Ca2+-

dependent CGRP release was assayed using EIA. Results are means ± s.e.m.; n = 3.  
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4.2.8 Knock down of Sbr I gene expression by shRNA resulted in a substantial 

reduction of CGRP exocytosis directly pinpointing Sbr I as being required 

ShRNA is a short sequence of RNA which makes a tight hairpin turn and can be used 

for stable and long-term gene silencing. Sbr I shRNA lentiviral transduction particles 

supplied by Sigma contains 5 clones for knock down of mouse Sbr I gene expression. 

Each clone targets a specific sequence, as indicated in Fig. 4.17A. 

Mouse cultured TGNs at 7 DIV were infected with individual clones of Sbr I shRNA 

lentiviral particles for 8 days before basal and K+-evoked CGRP release were 

monitored (see Chapter 2). After release, cells were then solubilised in LDS-sample 

buffer and subject to SDS-PAGE and Western blotting. Sbr I and Sbr II were 

visualized using isoform-specific antibodies. Other SNARE proteins, SNAP-25 and 

syntaxin I were also detected using their specific antibodies. All 5 individual clones 

knocked down expression of Sbr I as shown in Fig. 4.18 A. In contrast, Sbr II and 

internal control proteins (syntaxin I, SNAP-25) remained unaltered (Fig. 4.18 A).  

Knock down of expression of Sbr I did not significantly affect basal release (data not 

shown) but caused nearly 45% reduction of CGRP release evoked by 60 mM [K+] from 

mouse TGNs (Fig. 4.18 B), which directly pinpoint a pivotal role of Sbr I in mediating 

exocytosis of this transmitter. The same procedures were performed in rat TGNs 

though all these 5 clones of shRNA were originally designed for knock-down of mouse 

Sbr I gene. According to gene sequence alignment, clone #2 perfectly matches the rat 

gene sequence and clone #4 has only 1 nucleotide mismatch (Fig. 4.17 B). 

Subsequently, both of them significantly reduced rat Sbr I expression (Fig. 4.18 C); the 

control proteins, SNAP-25, syntaxin I and Sbr II remained unchanged. For the reduced 

expression level of Sbr I, K+-evoked Ca2+-dependent CGRP release was decreased 

~55% by clone #2 (Fig. 4.18 D).  

From Western blotting, Sbr I protein was hardly detected from shRNA lentiviral 

particles infected cells. However, immunocytochemical staining using the same 

antibodies against Sbr I with different dilution indicated there was residual Sbr I after 

shRNA treatment (Fig. 4.19). Mouse cultured TGNs grown on coverslips were treated 

with clone #3, followed by fixation, permeabilisation and staining with antibodies 

specific for Sbr I or II. Notably, Sbr I signal is significantly reduced on the neurites and 

cell bodies relative to the untreated samples; in contrast, Sbr II signal remained same as 

control. Such differences were more apparent in the merged images (Fig. 4.19).  
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Fig. 4.17A.

shRNA targ

 

 
  Mouse  Sbr I cDNA sequence (GenBank accession No. NM_009496). 5 

eting regions are indicated. 
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1    CCGCAGTTAG AGTTCCGGGT GGCTCGCGTG AGGCGGAGCT CGGCAGTTCC GTCTACTTCA
61   GCCGCAGCGT CTCCCTGCCT GTCTCATTGC ATTCTCTAGA GAGGGGACGG ACCTCCACTT
121  CCTCTTTCAG AAAAATGTCT GCTCCAGCTC AGCCACCTGC TGAAGGGACA GAAGGGGCTG
 
 
181  CCCCAGGTGG GGGTCCTCCT GGTCCTCCTC CCAATACGAC CAGTAACAGA CGATTACAGC
                                          *   *                  *       * 
241  AAACCCAGGC ACAAGTGGAG GAGGTGGTGG ACATCATGCG CGTGAATGTG GACAAGGTCT
301  TGGAGAGGGA CCAGAAGTTG TCAGAGTTGG ATGACCGAGC TGACGCCTTG CAGGCAGGAG
361  CGTCAGTGTT TGAGAGCAGT GCTGCCAAGC TAAAAAGGAA GTATTGGTGG AAAAACTGCA
 
 
 
 
 
421  AGATGATGAT CATGCTGGGA GCTATCTGTG CCATCATCGT GGTAGTAATT GTAATCTACA
                                                       * 
481  TTTTTACTTG AGAATGTGCC ATCCCTTCCC TGTTCTCCAT TGCCATCCAA GCTCATGTTT
541  CCCCTCTGTT TGCTCTCTCA ACAAAGTCCT CCATCTTCCG TTCTCCATCC TGGCCCAGGC
601  TTCTCTGTGA TCCGACCTTC CCTTTTTGTT GCATTCATTC GCACTCTTCC TCAAAACTAG
661  AAATGCTGCT CGTGGCACAG TCCTGAAAGT CACTGCCCGA AGAGAACACC CAGCACCTCC
721  TCTTTACCCA TTTATCATGT GCCCTGGAGC TTAAAAGAGT TGTGGCCAAT GGCAGAGGTG
781  AAGTGTCTGA GAAGTTAGCA TGGCTGAGGG GAAGAGAAAG GCATTTGTGT CCAAGAAAGG
841  CTGGCCTTTG GCAGGAGGGA AGCAAGAATA GTTGGGAAGT AGTAGCTTGC TGCCAGTGTA
901  TATGTATATG TATATGTATA TGTATATGTA TATGTATATG TATATGTATA TGTATATGTA
961  TATGTATATG TATATGTATA TGTATATGTA TATGTATATG TATATGTATA TATTAGTTGG
1021 GAACTATGAC CTGCTGTCCT CATTTGGAAC TTTCCTCCCA TACCAGGCCT GTCTTGGGTC
1081 CCAGAGGTCT GTTTAAAGAC CAACTTCAAA TCCCTTTTAG AAAAACATCA AACTTGCATT
1141 TTGTAGCTAC TGTTATCTGT CAGTACAAGA TTTTCTGTGT CTTTGGGGGA ACTTTACAAC
1201 TTTTCGCTTT GTCTCTATAG CCCCAGGAGA GAAGTACCTT CTGATTTTAA AAACAGCAGG
1261 ACACTCTTAC CTTCTTCTAG AAGGCGTCCC ACATGCTTCT GACTAGAAGG AGCTACCACC
1321 TCTTCATGTC ATCTGAAGCA TTTGATGTTG TTCATGAAGG CACCAAATAA TTTCAGGGAA
1381 TGAGGGGCTT TGAGGATAAC AGGCTCTCAG GAACACGCTC CATGCCATCC CACTCTCCAA
1441 TGAAAGCCCT GTACCTCCCT TGTTGATTAA GAGAAATGAG AGTTATATGG TGAGACTCCC
1501 AGGGTCCCAC AGAACACTTC CCCCTGCACT ACCCACTTAC TGTGTGTAAG ACAAGGATGA
1561 GGCAGGAGGG CCTTTCCAGA TTCAGCTCAG ACTTGGATAG CGGGGTCTAG GCTGTGTCAG
1621 GTGTACCGTG CACTGCTGTG TGGCATGGGC CTCGCATCCG CAGCTGCCTG CCGTGCTTCC
1681 TTCAGTTCTT TCTCTGCAGC TGCCGTGTCC ATCCATCCTG CATCACCTCC TTCCTTTCCC
1741 TCCCTTTGCA TGCTCTGTGC GCAGACTCTG GAACCGAGGA CAGGAGCTGC TCAGTCTGTT
1801 TTGGGAGCTT CTGCTGAGCC TCAGATAGGA TGCTGCATGG GGTAAAGCCA GGTGCTGGGG
1861 TGGGAGCAGG GTGGGAGCAG GAGGGGTGTT CTCAGACCTC TATTCCTGCT GTCCTCTGGT
1921 GCACAAGCAG GAGAGGTGGC CATGCTAGGC TGGGTGCCCA CTTCCCGTGA AGCAGCATTT
1981 CATTCTGCAG AACCATCCTT CCTTTCCCTT GCCCATTTCC CACGTTTCCT TCGTGCTGCC
2041 TCAGGGCAGG ACTGAAGAGC TGGAAGGAAG CAGTCAGTGT ACCCTCCCAA CGTTCCCTGA
2101 AGGTCTCCAC TAGACTCTGG GCTTCCCTTT GCCTAGTGCA GGGGTCACCG CTGGAGAAGA
2161 ACCAACACTG TCCTTGGTGT GCTCCAAGCC TGGAGCCAAT TTACCCTGTT GGCCCACCCA
 
 
2221 GCCCCAGCGG GGGATTATTT CCTGGGTTTC TGTCCCTCCA AGGCTTACCA GGTGTAGTTG
             *         * 
2281 GCTTTGTTCT TCTGGGGCTG TTAGTCCTTC TACTTTCTTT CTCACTTCAC CCTGGACCCC
2341 CTTCTGTGTC TCTGCAGTCT TCTGTCCCTC CCACCCATGT GCATGAGCAA ATATGCAACT
2401 TACCTTGGGA TCTGCAGTCA GTTGAAGCCA AGCTTCCCAC ATCCTCTTTG TTTGCCATGA
2461 GGTGATGTGG GGTTTCCATT GTGTCTGTCA TTACCACCGT GTCTTTCCTA ACCCAGTCTC
2521 ACAGTTTATG TATAGTAGTA AGAGTTGTCC TTCCACCAAA GGCATGTGAC AGATTTACCA
2581 ATCTCATGTA TTCTCAACAA AGGCGAAAAA TACAAATTCC TACCACAACA TGGAAAAAAA

#1

#2 #3 

#4

#5

 
Fig. 4.17B. Rat  Sbr I cDNA sequence (GenBank accession No. NM_013090). 5 

shRNA targeting regions are indicated and the nucleotides differing from mouse gene 

are pointed by * and highlighted in yellow. 
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Fig. 4.18 Knock down of Sbr I by shRNA caused significant reduction of K+-evoked 

CGRP release. TGNs at 7 DIV were separately infected by 5 different Sbr I shRNA 

lentiviral particles (3x 105 each). At 8-10 days post-infection, release of CGRP from 

infected- and non-infected control cells under basal and 60 mM [K+] stimulation 

conditions were assayed. Released cells were then solubilised in 2xLDS sample buffer 

and equal volumes (1/10) of samples were subjected to SDS-PAGE and Western 

blotting. The same samples were loaded onto two different gels seperately blotted with 

antibodies against SNAP-25, syntaxin I and Sbr I or Sbr II. Representative 

immunoblots showing Sbr I protein level in all 5 clones infected mouse TGNs (A) or 

clone #2- and #4-infected rat TGNs (C) was significantly decreased compared to non-

infected control cells, whereas shRNA did not affect Sbr II expression. Other SNARE 

proteins, SNAP-25 and syntaxin I also maintained unchanged in treated cells and non-

treated cells. The antibodies used for Sbr I and II are isoform-specific with no cross-

reactivity with each other. Knock down of Sbr I expression caused substantial 

reduction of K+-evoked CGRP release in mouse (B) and in rat (D) compared to non-

infected control. Data plotted are means ± s.e.m.; n = 4 (mouse) or 2 (rat). 
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Fig. 4.19 Immuno-fluorescence staining demonstrated reduction of Sbr I expression 

in the shRNA-treated samples compared to control cells. Mouse TGNs grown on 

coverslips at 7 DIV were infected by clone #3 shRNA lentiviral particles. At 8 days post 

infection, cells were fixed, permeabilised  and stained with rabbit anti-Sbr I (1:1000) 

followed by donkey anti-rabbit Alexa Fluor 546 (1:200) or mouse anti-Sbr II (1:1000) 

followed by donkey anti-mouse Alexa Fluor 488 (1:200). Representative micrographs 

show the reduced Sbr I expression and unchanged Sbr II level in the (A) shRNA treated 

relative to the (B) un-treated control specimens, by indirect immuno-cytochemistry 

staining. ShRNA clone #3 treated cells were chosen as a representative example. Scale 

bar=20µm. 
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4.3 Discussion  

The evidence obtained for SNAP-25 being essential for K+-evoked CGRP release is 

clear-cut because BoNT/A caused near-complete inhibition (~ 90%) and an equivalent 

extent of cleavage. This accords with its putative acceptor __ synaptic vesicle protein 

2A, B and C (Dong et al., 2006; Mahrhold et al., 2006) __ being found in the TGNs.  In 

contrast, capsaicin-elicited exocytosis of CGRP from TGNs proved largely non-

susceptible to BoNT/A; this corresponds to the a minimal inhibition of SP release by 

this toxin from rat dorsal root ganglionic neurons (Purkiss et al., 2000).  As VR1-

positive TGNs express SV2, BoNT/A should be able to enter the capsaicin-responsive 

neurons. Although SNAP-23 is non-susceptible to BoNT/A, only a low level was 

detected in TGNs; therefore, this seems inadequate to explain the lack of inhibition of 

CGRP exocytosis from capsaicin-sensitive neurons. Thus, the observed lower 

efficiency of BoNT/A in blocking capsaicin–evoked release of CGRP may be due to 

the known ability of elevated intra-neuronal Ca2+ concentration to partially reverse 

BoNT/A-induced inhibition [(Sakaba et al., 2005; Verderio et al., 2004), see Chapter 5]; 

this could result from a large, capsaicin-triggered Ca2+ influx through the non-selective 

cation channel of the VR1 receptor (Caterina et al., 2000) and, also, causes Ca2+-

induced Ca2+ release form the internal Ca2+ store (Karai et al., 2004).  Contrary to the 

consistent outcome of this study and that of (Purkiss et al., 2000), there is a single 

report that a haemagglutinin–toxin complex of type A blocks capsaicin-evoked CGRP 

release from TGNs (Durham and Cady, 2004); however, the latter result could not be 

reproduced and a more indepth mechanism study was conducted to investigate the 

inability of BoNT/A inhibitions CGRP release elicited by capsaicin (see Chapter 5).  

Unlike SNAP-25, determination of the contribution of syntaxin I to exocytosis from 

TGNs was not possible because a near-equal cleavage of syntaxin I and SNAP-25 by 

BoNT/C1 precluded assessment of their individual contributions to its partial inhibition 

of CGRP release.   

Evidence for Sbr being essential for CGRP release evoked by K+, capsaicin or 

bradykinin was provided by the inhibition of each with BoNT/D associated with 

cleavage of Sbr I, II and III; moreover, basal efflux seemed to be reduced which 

accords with its ability to reduce spontaneous release at crayfish motor synapses (Hua 

et al., 1998). As this neurotoxin cleaved all 3 isoforms of Sbr, assessment of their 

relative contributions to exocytosis necessitated carrying out additional experiments 

with type B which is unable to cleave Sbr I in rat (Fig. 4.6 A). Despite near-complete 
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cleavage of Sbr II (and III) by 100 nM BoNT/B, its observed inability to cause any 

detectable inhibition of K+-evoked CGRP release indicated that these two isoforms are 

not essential as their roles can be taken by Sbr I. The possibility of BoNT/B-resistant 

CGRP release occurring from a sub-population of neurons unable to internalize this 

toxin was excluded by the complete cleavage of Sbr II and, especially, the 

demonstrated presence of synaptotagmin I/II in all of the CGRP-positive neurons 

because these proteins act as acceptors for the /B toxin (Chai et al., 2006; Dong et al., 

2003; Jin et al., 2006). Participation of Sbr I in CGRP exocytosis is an interesting and 

novel feature of TGNs, also seen with K+-evoked Ca2+-dependent release of SP from 

rat TGNs which proved non-susceptible to BoNT/B but was inhibited by serotypes /D 

or /A. Importantly, BoNT/B did cleave Sbr I and blocked exocytosis of CGRP from 

mouse TGNs. Use of newly-generated chimera AB and BA have shed significant light 

on the functionality of Sbr I. Chimera AB with its HC/B domain was found to enter rat 

TGNs, cleave SNAP-25 and cause inhibition of CGRP release to the same extent as 

BoNT/A. This demonstrated the presence of functional receptors for BoNT/B on all rat 

TGNs, consistent with immuno-fluorescence staining results showing synaptotagmin 

I/II present on CGRP positive rat TGNs. Chimera BA, harnessing the HC/A domain 

was found to readily enter TGNs (rat and mouse) cleaving almost all Sbr II at a 

concentration of 100 nM; this blocked CGRP release from mouse but not rat, further 

confirming Sbr I involvement in CGRP release from TGNs.  Knock down of Sbr I gene 

by shRNA resulted in a substantial reduction in CGRP release. Thus, it is reasonable to 

conclude that isoform I can mediate CGRP release from LDCVs, at least in sensory 

neurons. This is supported by co-immunoprecipitation experiments on TGNs showing 

that Sbr I occurs in SNARE complexes that contain SNAP-25 and syntaxin I.  A large 

proportion of these complexes proved resistant to SDS-denaturation and showed Mr > 

100 k on SDS-PAGE unless the samples were boiled, in which case the signals for the 

individual SNARE components were increased due to complex disassembly. These 

features are characteristic of neuronal SNARE complexes (Hayashi et al., 1994; Otto et 

al., 1997). Moreover, CGRP-containing vesicles immuno-isolated by Sbr I-specific 

IgGs possessed Sbr I and II; accordingly, LDCVs isolated by density gradient 

centrifugation were shown to contain CGRP as well as the SNAREs (Sbr I, II and III 

together with SNAP-25 and syntaxin I).  In rat where Sbr I is non-susceptible to 

BoNT/B, this toxin can nevertheless block exocytosis from central neurons of several 

transmitters (e.g. glutamate, γ-amino-butyrate) (Foran et al., 2003; Schoch et al., 2001; 
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Verderio et al., 2004). These published data indicate that the majority of Ca2+-

dependent exocytosis from SCSVs in these neurons (at least 80% of glutamate release 

from rat cerebellar neurons) requires Sbr II and/or III; thus, it seems Sbr I is not 

essential for the latter. Likewise, a major role for Sbr II in exocytosis from SCSVs 

(Takamori et al., 2006) accords with its predominance therein and correlates with a 

100-fold reduction in Ca2+-triggered fast transmitter release in knock-out mice lacking 

this isoform (Schoch et al., 2001).  Hence, the ability of Sbr I to support exocytosis in 

TGNs is not replicated in all neuron types, possibly due to the reported differential 

expression of Sbr I and II  (Aguado et al., 1999; Trimble et al., 1990).  Unfortunately, 

the release of detectable levels of classical SCSV transmitters could not be elicited 

from the TGNs with the stimulation methods used for CGRP and, thus, it was not 

possible to investigate the responsible Sbr isoform. Utilisation of Sbr I may be a 

characteristic of sensory neurons because studies on rat derived preparations, in which 

this isoform is BoNT/B-resistant, have shown that cleavage of Sbr II/III blocks 

exocytosis of noradrenaline release from ‘large dense-core like’ vesicles in 

cerebrocortical synaptosomes and PC-12 cells (Ashton and Dolly, 1997; Lomneth et al., 

1991). Although this is the first demonstration that Sbr I can mediate regulated 

exocytosis in TGNs, it is noteworthy that dopamine release from LDCVs in rat brain 

nerve terminals can be reduced by BoNT/B but not its somato-dendritic release 

(Bergquist et al., 2002).  Therefore, considering this together with our direct evidence 

leads to the deduction that Sbr I participates in toxin B-resistant release from rat TGNs 

at sites remote from the active zones in the presynaptic membrane  where CGRP 

exocytosis has been shown to occur (Bernardini et al., 2004).  Indeed, as BoNT/B was 

completely ineffective in reducing CGRP release (despite cleaving all the Sbr II and III 

in rat TGNs), it must largely arise from vesicles that contain Sbr I.  Based on all these 

consistent findings, it is apparent that Sbr I can underlie this special type of exocytosis 

which would allow the released CGRP to activate its receptor on blood vessels in the 

vicinity (Edvinsson, 2004).  This also seems to apply to other sensory neurons because 

K+-evoked CGRP release from DRG neurons from mouse, but not rat, is blocked by 

BoNT/B. Furthermore, our proposal is supported by the lack of statistically significant 

inhibition of SP release by BoNT/B (unlike other serotypes) in cultured neurons from 

embryonic rat DRGs (Welch et al., 2000). In fact, the demonstrated involvement of Sbr 

I in peptide exocytosis from LDCVs in sensory neurons may contribute to the 

neurological defects found in mice with a Sbr I null mutation that die soon after birth 
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(Nystuen et al., 2007). Undoubtedly, identifying SNARE isoforms used preferentially 

in exocytosis from different vesicle types in other varieties of secretory cells, and 

pinpointing the inherent functional advantages, should shed light on subtle 

dissimilarities likely to exist in the exocytotic processes and/or their fine control in 

eukaryotic cells. 

Colletively, BoNTs and the newly developed chimeric toxins proved instrumental in 

dissecting the exocytosis pathway, providing evidence for the functionality of the 

SNAREs and, in one case, pinpointing Sbr I involvment in the pain-peptides release 

from sensory neurons. Also, the chimeric toxins may have distinctive pharmacological 

potential. Although BoNT/D served as a universal blocker of the release from sensory 

neurons, human neuromuscular junction has been demonstrated to be insensitive to 

BoNT/D due to lack of its receptor (Coffield et al., 1997), which excludes it as a 

therapeutic for humans. Another toxin, BoNT/A blocked K+- and bradykinin- evoked 

release, but hardly affected capsaicin-elicited release; the latter is a specific stimulant 

for C-fibres, indicating the requirement for an alternative (see Chapter 5), or a variant 

toxin. The information gained from this chapter provides new insights for designing 

novel recombinant chimeric BoNTs with improved anti-nociceptive function over 

natural BoNTs that should be effective on human sensory neurons (see Chapter 5).  
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5.0 Capsaicin-evoked CGRP release from nociceptive neurons is resistant to 

BoNT/A due to sustained increased [Ca2+]i but can be inhibited by a re-targeted   

E/A chimera 
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5.1 Overview  

Initial reports on the clinical applications of BoTOX for alleviating the symptoms of 

migraine indicated beneficial outcomes in just a certain group of sufferers (Mauskop, 

2002; Silberstein et al., 2000).  However, the impressive improvement in these 

responders, whose symptoms had proved resistant to other therapeutic regimes, 

highlights the importance of in-depth neurochemical examination of the inhibitory 

action of BoNT variants on the release of pain mediators from sensory neurons. Further 

justification is provided by the likelihood that an effective BoNT-based therapy will 

emerge for tension headache and other forms of chronic pain (Foran et al., 2003; Gupta, 

2005) because of the occurrence in various neuron types of the toxin’s target, SNAP-25.  

Such an important prospect is heightened by the remarkable success of BoTOX in 

treating numerous conditions arising from hyper-activity of nerves innervating muscles 

(Dolly, 2005) or secretory glands (Kim et al., 2006), due to cleavage of SNAP-25 by its 

LC protease (Dolly and Lawrence, 2007). Already, it is becoming apparent that the 

anti-nociceptive effects of BoTOX arise from peripheral inhibition of the release of 

transmitters/pain mediators (e.g. CGRP, SP and glutamate) which, in turn, minimise 

sensitisation of pain relay systems in the brain (Aoki, 2005). Nevertheless, though 

attenuation of nociception by this toxin has been demonstrated in animal pain models 

(Bach-Rojecky et al., 2005; Cui et al., 2004), other studies have found it to be 

ineffective (Schulte-Mattler and Martinez-Castrillo, 2006; Voller et al., 2003). 

TGNs, maintained in culture, provide a suitable model (Durham and Cady, 2004) for 

biochemical investigation of the inhibition by BoNTs of Ca2+-dependent CGRP 

exocytosis, a process known to involve SNAP-25, Sbr I and, probably, syntaxin I 

(Chapter 4). CGRP release can be triggered from TGNs by K+-depolarisation, 

bradykinin or capsaicin; bradykinin acts on its type 2 receptor and causes acute 

sensation of pain whereas capsaicin activates C-fibres by binding to VR1, opening its 

non-selective cation channel and, thereby, inducing pain (Caterina et al., 2000). Type A 

BoNT was found to inhibit CGRP exocytosis induced by elevated [K+] or bradykinin 

but to exert minimal effect on that evoked by capsaicin despite TGNs containing the 

toxin’s acceptor and target (Chapter 4). To gain insights into this enigma, BoNT/E was 

investigated because it shares the same intracellular SNARE target as /A but cleaves 26 

rather than 9 residues off the C-terminus of SNAP-25 (Binz et al., 1994). Furthermore, 

it could offer additional features attractive for future therapeutic purposes, namely, 

faster neuro-paralysis than /A (Lawrence et al., 2007; Simpson, 1980; Simpson and 
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DasGupta, 1983) indicating a more rapid translocation into neurons (Keller et al., 2004). 

Surprisingly, the present study found BoNT/E to be virtually ineffective in cleaving 

SNAP-25 and blocking CGRP release from TGNs. As this raised the suspicion of these 

lacking a high-affinity acceptor for /E (its identity remains unknown), the HC binding 

moiety of BoNT/E was replaced by its counterpart from /A (Wang et al., 2008). By 

availing of the toxin’s independent domains (Stevens et al., 1991), this EA chimera 

exploits the most active moieties of the two serotypes. It was shown that EA entered 

cultured rat CGNs faster than BoNT/A and potently cleaved SNAP-25 in TGNs, 

blocked the transfer of synaptic vesicle proteins to the cell surface and inhibited CGRP 

release elicited by all stimuli, including capsaicin.  

 

5.2 Results 

 

5.2.1 Capsaicin-evoked CGRP release from TGNs is only partially inhibited by 

BoNT/A and virtually resistant to /E 

Although BoNT/A entered TGNs and displayed a dose-dependent cleavage of SNAP-

25 (up to ~ 85% with 1 µM; Fig. 5.1 A) that correlates with its inhibition of  K+-evoked 

CGRP release (cf. Fig. 4.1), secretion elicited by bradykinin was blocked to a slightly 

lesser extent and the exocytotic response to capsaicin was only reduced by <20% even 

at 1 µM toxin (Fig. 5.1 B). As this suggests that the 9 residues removed from the C-

terminus of SNAP-25 by BoNT/A are not essential for inhibiting capsaicin-triggered 

CGRP release, the effects of deleting a total of 26 amino acids with type E were 

examined because it potently blocks exocytosis from central and peripheral neurons 

(Foran et al., 2003; Lawrence et al., 2007).  Surprisingly, TGNs proved virtually 

insensitive to BoNT/E, as reflected by the absence of SNAP-25 cleavage except for a 

trace at high concentations (Fig. 5.1 C) and the observation that neither K+- nor 

capsaicin-triggered CGRP release were reduced by more than 15% (Fig. 5.1 D). These 

findings suggest that TGNs lack a high-affinity acceptor for BoNT/E, unlike motor 

nerve terminals and cultures of other neuron types which internalise it more rapidly 

than /A (Keller et al., 2004; Wang et al., 2008). Alternatively, it is possible that 

capsaicin could stimulate release via a mechanism utilising an /E-insensitive 

homologue. Clearly, an alternative strategy was required to examine the role of SNAP-

25 in CGRP release elicited by capsaicin from these sensory neurons. Hence, a chimera 

 109



consisting of the acceptor-binding domain (HC) of /A together with SNAP-25 cleaving 

LC of /E and HN/E was utilised. 

 

 
Fig. 5.1 BoNT/A cleaves SNAP-25 in TGNs and inhibits CGRP release evoked by K+ 

>bradykinin>>capsaicin whereas BoNT/E is ineffective. Rat cultured TGNs at 7 DIV 

were exposed to BoNT/A (A, B) or /E (C, D) at 37°C in culture medium for 24 hours. 

Evoked release of CGRP (B, D) over 30 minutes at 37°C was measured by EIA (see 

Chapter 2). Cells were then solubilised in LDS-sample buffer and equal volumes 

subjected to SDS-PAGE and Western blotting (A, C), using an antibody that recognises 

intact and truncated SNAP-25. The proportions of intact substrate remaining (B, D) 

were calculated relative to the internal control, uncleaved syntaxin, by visualisation 

with its specific antibody and analysis of digital images of the gels. SNAP-25 was 

extensively cleaved by BoNT/A (A, B) but not /E (C, D, ). BoNT/A inhibited CGRP 

exocytosis (B) triggered by K+ or bradykinin but gave a minimal reduction in that 

evoked by capsaicin; there was negligible inhibition by /E (D) of the release evoked by 

60 mM K+ ( ) or 1 µM capsaicin (●). Data plotted are means ± S.E.M.; n ≥ 3. 
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5.2.2 Generation of chimera EA toxin: its design, production and characterisation 

As BoNT/A binds to cell surface acceptors via the C-terminal moiety of its HC, HC, 

delivery of the BoNT/E protease activity (i.e. its LC) into TGNs was attempted by 

swapping its HC domain with the corresponding region of /A. For this purpose, a 

synthetic DNA fragment encoding the LC and HN portions of BoNT/E had been ligated 

to that encoding BoNT/A HC, expressed as a single-chain (SC) in E. coli, purified and 

converted to the activated disulphide-linked dichain (DC) form (Wang et al., 2008).The 

schematic construction map is described in Fig. 5.2.  

 

5.2.3 Chimera EA toxin displays the desired properties  

EA was expressed and purified as a SC polypeptide whose major protein band 

migrated as Mr~145 k band upon SDS-PAGE in either the absence or presence of DTT; 

a minor amount of larger, aggregated material (that disappeared upon reduction) was 

detected by Coomassie staining and Western blotting (Fig. 5.3). Western blotting 

demonstrated the presence of BoNT/E LC and epitopes from BoNT/A (Fig. 5.3 B, C) 

in the SC and confirmed the absence of truncated forms. Controlled proteolytic nicking 

converted the SC to a disulphide-linked DC which, as expected, showed different 

behaviour in SDS-PAGE in either the absence or presence of DTT (Fig. 5.3 A). 

Incubation with Trypzean  achieved complete nicking of the chimera, as demonstrated 

by the appearance of Mr~97 k HC and Mr~47 k LC upon SDS-PAGE of the DC in the 

presence of DTT, whereas it appeared as a Mr~145 k band in the absence of reducing 

agent indicating that the inter-chain disulphide bond had been formed in the vast 

majority of the toxin (Fig. 5.3 A). The presence of the requisite moieties (LC/E and 

HC/A) in EA DC and the successful removal of the His6 tag were confirmed by 

Western blotting (Fig. 5.3). Therefore, the expected domains from each parental toxin 

were demonstrated to be incorporated into chimera EA (Fig. 5.3). 
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Fig. 5.2 Schematic representation of the novel EA chimeric construct generated. 

Chimera EA gene consists of synthetic LC-HNE (hatched box) and HCA (black box) 

gene fragments which were cloned into pET29a vector followed by C-ter His6 sequence 

(Wang et al., 2008). Numbers refer to residue positions in the amino acid sequences 

(GenBankTM accession numbers AF488749 and X62683) of corresponding parental 

BoNTs. S-S denotes the interchain disulphide bridge formed between LC and HC. 

Letters between bars specify amino acids in the single letter code that were chosen as 

linkers between domains.  
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Fig. 5.3 Properities of chimera EA: a highly purified and completely nicked 

recombinant protein. EA toxin was expressed in E.coli, purified by immobilized metal 

affinity and cation exchange chromatography  (Wang et al., 2008); the resultant SC 

toxin was converted to the DC form using trypzean (8 µg/mg BoNT incubated at room 

temperature for 1 hour). Aliquots were subjected to SDS-PAGE on 4-12% Bis-Tris gels 

in the absence or presence of 25 mM DTT (as indicated), followed by either Coomassie 

staining (A) or Western blotting (B-D) with antibodies against LC/E (B), BoNT/A (C) 

and His6(D). Arrows indicate the positions of SC/DC, HC and LC.  
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5.2.4 EA binds to the SV2C acceptor for /A and cleaves SNAP-25 like /E 

To examine if EA had acquired the binding selectivity of BoNT/A, its interaction with 

the fourth intra-lumenal loop of SV2C (SV2C-L4) (Fig. 5.4 A) was examined because 

this together with gangliosides act as acceptors for HC/A (Dong et al., 2006; Mahrhold 

et al., 2006). A SV2C fragment fused to GST (GST-SV2C-L4) and immobilised on 

glutathione-Sepharose was incubated with BoNT/A, /E or EA plus gangliosides before 

assessing toxin binding by Western blotting (see Chapter 2). As expected, BoNT/A was 

recovered with the glutathione-Sepharose when GST-SV2C-L4 was present (Fig. 5.4 

B); on omitting the fusion protein from control incubations no association with 

glutathione-Sepharose could be detected (data not shown). In contrast, BoNT/E failed 

to bind the fusion protein-beads, confirming that BoNT/A but not /E binds to SV2C 

(Mahrhold et al., 2006). Importantly, the DC form of EA was recovered with the 

affinity resin containing SV2C-L4, demonstrating that substitution of the HC of 

BoNT/E with the corresponding domain of /A conferred the acceptor specificity of the 

latter onto the chimera. As SC EA also bound the SV2C fusion protein (Fig. 5.4 B), 

nicking is not essential for interaction with the acceptor. EA also proved enzymically 

active towards a model substrate GFP-SNAP-25(134-206)-His6 (Wang et al., 2008) 

yielding a truncated fragment that co-migrated on SDS-PAGE with the product of 

BoNT/E but not /A (Fig. 5.4 C). This established the presence of /E-like protease 

activity in EA. 
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Fig. 5.4 Both SC and DC forms of EA bind to SV2C-L4 like BoNT/A but give /E-like 

cleavage products in vitro. (A) SV2C structure with the fourth loop highlighted in red 

circle, cited from (Mahrhold et al., 2006); SV2C has 12 transmembrane domains and 

one large intravesicular domain, named loop 4. Numbers specify amino acid positions 

of the isoform SV2C. (B) GST-SV2C-L4 immobilised on glutathione–Sepharose beads 

was incubated with EA (SC or DC), BoNT/A or /E (DC) at 4°C for 4 hours; after 

extensive washing, the bound proteins were eluted in LDS sample buffer; < 5% of the 

total protein or 40 ng of marker toxins were analyzed by SDS-PAGE (see Chapter 2). 

Toxins and the fusion protein were subsequently detected by Western blotting with the 

antibodies indicated. (C) A model substrate [GFP-SNAP-25(134-206)-His6; 13.5 µM] 

was incubated with 25 nM EA or its parental toxins for 30 minutes at 37°C (Wang et 

al., 2008); reactions were stopped by adding LDS-sample buffer and equal amounts of 

protein subjected to SDS-PAGE followed by Coomassie staining. 
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5.2.5 EA cleaves SNAP-25 in cultured CGNs as well as BoNT/E and shows a faster 

rate of uptake than BoNT/A 

5.2.5.1 EA efficiently binds, enters into rat cultured CGNs and cleaves SNAP-25 

Cultured CGNs 7 DIV were incubated with native BoNT/A, /E or chimera EA for ~24 

hours. These three toxins exhibited similar cleavage activity (Fig. 5.5 A) except /A 

reached saturation point at ~60% cleavage; this indicates EA is fully active (Fig. 5.5 B). 

5.2.5.2 EA enters cultured neurones more rapidly than /A 

The uptake of BoNT/A, /E or EA chimera was also studied in CGNs. Using conditions 

that stimulate synaptic vesicle recycling (Foran et al., 2003) in CGNs, which may 

promote the activity-dependent uptake of BoNTs as occurs at the neuromuscular 

junction (Dong et al., 2006), the potencies to BoNT/A, /E and EA chimera were 

increased but to different extents (Wang et al., 2008). However, the rates of cellular 

intoxication by BoNT/E and EA were clearly faster compared with BoNT/A (Fig. 5.6). 

Cleaved SNAP-25 was observed within 15 or 45 min of exposure to BoNT/E or 

chimera EA (Fig. 5.6 A); furthermore, in both cases, 50% of the total target had been 

cleaved within 160 min. In contrast, no product was detectable at 80 min in BoNT/A-

treated cells, and <20% SNAP-25 proteolysis occurred after 160 min (Fig. 5.6). These 

findings indicate that the apparent relatively rapid uptake of BoNT/E in these different 

neuronal populations can be attributed to its HN and/or LC. Moreover, the rate of 

uptake is not determined by acceptor binding domain, as  EA and /A both bind to 

acceptor SV2  (Fig. 5.4) that is not used by /E (Mahrhold et al., 2006). It was reported 

in previous study that the protease rate of chimera EA is similar to /A but faster than /E 

(Wang et al., 2008).  Thus, faster translocation to the cytosol seems to be the sole 

reason for the more rapid appearance of protease products.  
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Fig. 5.5 EA efficiently cleaves SNAP-25 with similar potency as BoNT/E or /A in 

CGNs. CGNs 7 DIV were incubated for 24 hours in culture medium with the specified 

concentrations of BoNT/A, /E or chimera EA. After removal of toxins by washing, cells 

were then solubilized in LDS-sample buffer and equal volumes of protein subjected to 

SDS-PAGE and Western blotting (A), with the specific antibodies indicated. (B) The 

extents of SNARE cleavage were quantified by densitometrically scanning and the 

proportion of substrate remaining calculated relative to an internal control, syntaxin I. 

Data plotted are means ± s.e.m.; n = 3. 
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Fig. 5.6 EA enters cultured neurones more rapidly than /A. CGNs 7 DIV were 

incubated with 500 pM toxins for 5 min in depolarization buffer (56 mM K+) followed 

by washing with medium and incubation under the indicated conditions in culture 

medium. After removal of medium, cells were then solubilized in SDS-sample buffer 

and equal amounts of protein subjected to SDS-PAGE and Western blotting, with the 

specific antibodies indicated (A). The extents of SNARE cleavage were quantified by 

densitometrically scanning and the proportion of substrate remaining calculated 

relative to an internal control (syntaxin I) (B). 
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5.2.6 EA, unlike /A, blocks synaptic vesicle fusion and CGRP release triggered by 

capsaicin in addition to K+ depolarisation 

The functional activity of EA relative to /A could be shown by monitoring its influence 

on the trafficking of exocytotic vesicles to the cell surface, using a proven immuno-

cytochemical technique (Matteoli et al., 1992). Binding of a mAb (Syt-Ecto), specific 

for the intra-lumenal domain of the synaptic vesicle protein synaptotagmin I, to TGNs 

was stimulated greatly by either K+-depolarisation (Fig. 5.7 A) or 1 µM capsaicin (Fig. 

5.7 B). This indicated increased exposure of the epitope due to fusion of vesicles 

containing synaptotagmin I with the plasmalemma. Although pre-exposing TGNs to 

100 nM BoNT/A blocked the enhancement of Syt-Ecto binding by K+-depolarisation 

(Fig. 5.7 A), this did not prevent the increase in binding elicited by 1 µM capsaicin (Fig. 

5.7 B), consistent with the toxin’s feeble inhibition of CGRP release elicited by this 

stimulus (Fig. 5.1 A). In contrast, EA prevented both capsaicin-triggered exposure of 

the Syt-Ecto epitope as well as that elicited by depolarisation, revealing blockade of 

vesicle fusion regardless of the stimulus (Fig. 5.7 B). 

The toxins’ potencies for blocking CGRP release from TGNs relative to cleavage of 

SNAP-25 were assessed by exposing primary cultures to a range of concentrations, as 

described in Fig. 5.1. The cells were > 1000-fold more susceptible to chimera EA (Fig. 

5.8) than BoNT/E (cf  Fig. 5.1 C, D), based on their EC50 values for SNAP-25 cleavage 

being ~ 1 nM and >> 1 µM, respectively. Moreover, CGRP release was inhibited dose-

dependently by EA (Fig. 5.8 B) whereas BoNT/E was impotent (cf. Fig. 5.1 D). 

Interestingly, after 12 hours incubation which proved to be optimal for SNAP-25 

cleavage and CGRP release inhibition (data not shown), the concentration-dependency 

of EA for inhibition of CGRP-release (Fig. 5.8 B) elicited by bradykinin (EC50 = 0.8 

nM) correlated very closely to the level of SNAP-25 cleavage, and K+-evoked release 

showed intermediate susceptibility. Although blockade of the capsaicin-triggered 

response was the least sensitive (EC50 ~ 10 nM), it showed far greater sensitivity to EA 

than BoNT/A (cf  Fig. 5.1 A).  

Clearly, recombination of the most desirable features of BoNT/E and /A to create 

chimera EA produced a more effective and broad-range inhibitor of CGRP release 

from sensory TGNs. As BoNT/A and EA bind to the same acceptor and, by 

extrapolation, the same population of cells, it seems probable that the greater versatility 

 119



of EA can be attributed to a more effective disabling of SNAP-25 than is caused by 

BoNT/A. 

 

 
Fig. 5.7 EA and BoNT/A both inhibit K+-evoked binding of synaptotagmin 1 

antibody to sensory neurons whereas only EA blocked the capsaicin-stimulated 

interaction. TGNs were grown on coverslips for 7 DIV, incubated with or without 100 

nM EA or BoNT/A for 24 hours before washing, and exposure to Syt-Ecto antibody for 

15 minutes in either basal or 60 mM K+ (A) or 1 µM capsaicin (B). Cells were then 

fixed (see Chapter 2) and images of the same field recorded in phase contrast (top 

panels) or fluorescent mode (bottom panels). The increased fluorescent signal induced 

by K+ stimulation was reduced to basal level by both toxins; in contrast, the elevated 

signal elicited by capsaicin remained unaffected by /A but significantly reduced by EA. 

In B, the vehicle (0.1% ethanol) for capsaicin was added to the basal medium. Scale 

bar = 20 µm. 
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Fig. 5.8 EA enters /E-resistant TGNs, cleaves SNAP-25 and inhibits CGRP release 

evoked by all stimuli. Cultured TGNs at 7 DIV were exposed to EA at 37°C in culture 

medium for 12 hours, and release of CGRP was assayed; Western blotting of the cells 

were performed and results calculated (as in Fig. 5.1) for  cleavage of SNAP-25 ( ) 

by EA (A, B). (B) EA-induced inhibition of CGRP release evoked by 60 mM K+ (□), 0.1 

µM bradykinin (▲) or 1 µM capsaicin (●). Data plotted are means ± S.E.M.; n ≥ 4.  
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5.2.7 The inhibitory ineffectiveness of BoNT/A compared to EA in TGNs accords 

with a differential stability of SNARE complexes formed by their SNAP-25 

cleavage products 

It has been reported that the 17 amino acids between the cleavage sites for BoNT/A and 

/E at the C-terminal of SNAP-25 are required for its high affinity binding to syntaxin 

(Bajohrs et al., 2004), although previous studies had found that N-terminal residues 2-

82 are sufficient (Chapman et al., 1994; Hayashi et al., 1994). In view of these 

conflicting in vitro data, obtained with recombinant fusion proteins or tagged protein 

fragments, formation of SNARE complexes in sensory neurones in situ was examined 

for possible perturbations by BoNT/A or EA. For this purpose, neurones were 

solubilised with SDS and subjected to two-dimensional PAGE before detection of 

SNAREs by Western blotting (Lawrence and Dolly, 2002). This protocol exploits the 

stability of SNARE complexes, which resist dissociation in SDS at ambient 

temperature and can be electrophoretically separated from non-complexed SNAREs 

(Hayashi et al., 1994). Subsequent heating of the gel sections denatures the complexes 

and liberates their constituents, which can be resolved by a second electrophoresis step. 

In SDS extracts from non-intoxicated cells, the majority of each immunologically-

detected SNARE (syntaxin, SNAP-25 and Sbr I) was not associated with any SDS-

resistant complex (Fig. 5.9; note samples in lanes marked * were diluted before 

electrophoresis). This is shown by their migrations in PAGE being unchanged by 

boiling and matching the mobilities predicted by their molecular masses. However, 

some SNAP-25 was retarded in the primary gel, but not in the second gel of the boiled 

sample demonstrating that a minority of this protein is associated with SDS-resistant 

SNARE complexes. SNAP-25 was present in complexes of variable size from Mr = 

52k to over 288k and, particularly, in the 104-288k range. Likewise, syntaxin was 

detected in SNARE complexes with Mr values between 52 and >288k; the 146-205k 

range showed the strongest intensity. In contrast, only a weak Sbr I immuno-signal 

could be detected, restricted to the Mr = 104-205k range. These observations suggest 

that some of the SNAP-25 and syntaxin in sensory neurones are associated tightly 

enough to resist dissociation by SDS. Sbr I (Fig. 5.9 A) appear to be minor components, 

indicative of the majority being binary SNAP-25:syntaxin complexes. However, it is 

not possible to calculate the precise ratio of each SNARE with the semi-quantitative 

technique used here. Stimulation of the TGNs with capsaicin produced only a moderate 

increase in the amounts of SDS-resistant complexes detected (Fig. 5.9 A) compared to 
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resting samples (data not shown). In cells exposed for 24 hours to 100 nM BoNT/A, 

the bulk of SNAP-25 was truncated, as shown by its increased mobility on PAGE (Fig. 

5.9 A); notably, both cleaved and uncleaved SNAP-25 were detected in SDS-resistant 

complexes. Syntaxin was also found to be present together with a trace of Sbr I in these 

toxin-treated samples. The fraction of each SNARE associated with the complexes did 

not seem to be altered compared to non-intoxicated cells. Clearly, SNAP-25A retains 

the ability to form SDS-resistant complexes with its SNARE partners. In contrast, only 

traces of SNAP-25E were associated with complexes in the 74-146k range in TGNs 

treated with EA, despite most of the SNAP-25 having been cleaved (Fig. 5.9 A). In the 

EA- treated samples, the quantity of complexes was clearly reduced compared to toxin-

free cells or those exposed to BoNT/A; minute amounts of uncleaved SNAP-25 and 

syntaxin were found in those complexes but Sbr I was undetectable. The inability of 

SNAP-25E to form complexes in sensory TGNs, unlike SNAP-25A, seems a likely 

explaination for the more extensive inhibition of exocytosis by EA than BoNT/A. 

In separate series of experiments, the apparent scarcity of Sbr I in SDS-resistant 

SNARE complexes in TGNs was probed using BoNT/D because it cleaves Sbr I, II & 

III and inhibits evoked CGRP release (see Chapter 4). In cells exposed to this toxin, the 

amount of non-complexed Sbr I was reduced by 80% and Sbr I could not be detected in 

SDS-resistant complexes (Fig. 5.9 B). Nevertheless, the latter complexes containing 

syntaxin and SNAP-25 were not diminished compared to toxin-free controls, 

supporting the notion that such binary complexes lack Sbrs. In TGNs exposed 

simultaneously to both BoNT/A and /D, ~ 50% of the SNAP-25 and 80% of Sbr I were 

cleaved; notably, only intact SNAP-25 was found in complexes from these TGNs (only 

a trace of SNAP-25A was detected), a striking contrast to its distribution in cells 

exposed to BoNT/A alone (Fig. 5.9 A). This suggests that Sbr I is required for 

stabilisation of complexes containing SNAP-25A even though it cannot be detected in 

SDS-resistant complexes. One possible explanation is that Sbr I weakly associates with 

syntaxin:SNAP-25 (or SNAP-25A) but is dissociated by SDS during cell solubilisation. 

If stable binding with syntaxin underlies the ability of SNAP-25A to support CGRP 

release in TGNs, intact Sbr is essential for this to occur. 
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Fig. 5.9 The presence of BoNT/A-truncated SNAP-25 in SDS-resistant SNARE 

complexes requires intact Sbr. TGNs at 7 DIV were incubated with or without (A) 100 

nM BoNT/A or EA or (B) 100 nM BoNT/D or 100 nM BoNT/D plus BoNT/A in culture 

medium for 24 hours. After toxin removal, cells were stimulated with 1 µM capsaicin in 

the presence of 2.5 mM Ca2+ for 30 minutes, before lysis in 2xLDS sample buffer and 

SDS-PAGE (without boiling). Gel sections containing the separated proteins were 

excised according to migration distance and extracted by boiling in LDS sample buffer 

before re-electrophoresis and immunoblot analysis (see Chapter 2). Antibodies against 

syntaxin, SNAP-25 (recognizing intact and cleaved products) or Sbr I were used. 

Pictures shown are from a single experiment representative of results obtained on 3 

independent occasions; ∗ 20% of sample volume was loaded was used in the lanes (A, 

B). 
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5.2.8 BoNT/A and EA reduce the sensitivity to external Ca2+ of CGRP exocytosis 

triggered by K+ from TGNs but only EA alters the Ca2+-dependency of the 

response to capsaicin  

SNAP-25 binds to synaptotagmin, a Ca2+-sensor thought to be the regulator of vesicle 

fusion, through Ca2+-independent and -stimulated interactions (Schiavo et al., 1997). 

The C-terminus of SNAP-25 has been implicated in the latter because its removal 

reduces the level of Ca2+-dependent binding (Gerona et al., 2000). However, in the case 

of SNAP-25A, the interaction is restored if [Ca2+]i is elevated, suggesting that BoNT/A 

reduces the sensitivity of the Ca2+-sensor. This finding has been used to explain the 

restoration of function to BoNT/A-intoxicated nerve terminals following treatments 

that open Ca2+-channels and/or increase membrane permeability to Ca2+. Applying this 

reasoning to the observed lack of blockade by BoNT/A of capsaicin-elicited responses 

from TGNs, stimulation with this agonist of VR1 may provoke greater elevation of 

[Ca2+]i than K+-depolarisation and, thereby, overcome the postulated reduction in Ca2+ 

sensitivity for triggering CGRP release. To test this hypothesis, the effects of BoNT/A 

or EA on the [Ca2+]-dependency and amounts of CGRP release from TGNs were 

quantified in the absence and presence of capsaicin or a Ca2+- ionophore, ionomycin. 

 Notably, dependencies on external [Ca2+] of the responses to K+ and capsaicin were 

similar in control cells (Fig. 5.10 A, B), although there was a higher level of basal 

release in the presence of capsaicin; the EC50 values for external [Ca2+] were 0.6 and 

0.9 mM, respectively, whilst ECMAX was ~5 mM in both cases. CGRP release elicited 

by either stimulus (Fig. 5.10 A, B) was effectively inhibited by 100 nM EA at [Ca2+] up 

to 5 mM, with some lessening at higher concentrations; the Ca2+-sensitivity was, 

apparently, reduced with respect to toxin-free control. In contrast, 100 nM BoNT/A 

poorly inhibited responses to capsaicin even at low external [Ca2+] but virtually 

abolished K+-evoked CGRP release in 1 mM [Ca2+] or less; however, further 

increments in external [Ca2+] supported increasing levels of K+-evoked CGRP release, 

with over 80 % of the maximal level seen at an extremely high [Ca2+] (Fig. 5.10 A). 

Assuming 100% recovery from inhibition could be achieved, the EC50 of Ca2+
 for 

depolarisation-evoked release from BoNT/A-treated cells was ~15 mM, a ~30-fold 

reduction in sensitivity relative to that for toxin-free cells. On the other hand, BoNT/A 

did not alter the external Ca2+-dependency of capsaicin-evoked CGRP release (EC50 ~1 

mM) despite causing a partial decrement in the amount of exocytosis in response to 
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each [Ca2+] (Fig. 5.10 B). Notably, the latter findings are difficult to reconcile with 

BoNT/A directly lowering sensitivity of the Ca2+-sensing mechanism. To gain insights 

into this differential reversibility, the influence of altering [Ca2+]i on the restoration of 

CGRP release from inhibition by toxins was investigated. TGNs treated with 100 nM 

BoNT/A or EA for 24 hours resulted in ~70-80 % inhibition of K+-evoked CGRP 

release (Fig. 5.10 C).  Although  ionomycin (5 µM) gave a small (~10%) increase in 

CGRP release from toxin-free cells stimulated by K+, it caused ~70% and ~20% 

recovery of exocytosis from cells pre-treated with BoNT/A or EA, respectively (Fig. 

5.10 C). Notably, in Ca2+-free medium, ionomycin and K+ depolarisation failed to elicit 

any release from toxin-treated cells, indicating a requirement for extracellar Ca2+. In 

contrast to K+ depolarisation, ionomycin slightly decreased (~15%) the amount of 

CGRP release from toxin-free cells stimulated by capsaicin (Fig. 5.10 D); moreover, it 

did not rescue capsaicin-evoked CGRP release blocked by EA (Fig. 5.10 D; p > 0.05). 

When Ca2+ was omitted, neither capsaicin nor ionomycin could evoke release from 

TGNs pre-treated with BoNT/A or EA (Fig. 5.10 D). As differences in intracellular 

Ca2+ signalling could account for the observed discrepancy between the BoNT/A 

susceptibilities of responses to K+-depolarisation and capsaicin, this was examined 

using TGNs pre-loaded with the membrane permeable Ca2+-indicator dye, Fluo 4-AM. 
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Fig. 5.10 Raising extracellular [Ca2+] reveals differences in the effects of BoNT/A 

and EA on the Ca2+ dependency of release from capsaicin-stimulated cells whereas 

use of ionomycin showed that K+-depolarization alone does not elevate [Ca2+]i 

sufficiently to overcome inhibition by BoNT/A. TGNs at 7 DIV were exposed to 100 

nM BoNT/A (A, B  or as indicated in C and D) or EA (A, B,  or as indicated in C 

and D) at 37°C in culture medium for ~24 hours. CGRP release was evoked by 60 mM 

K+ (A, C) or 1 µM capsaicin (B, D) in BR-HBS containing various [Ca2+] (A, B), 2.5 

mM Ca2+ in the presence and absence of 5 µM ionomycin, or in Ca2+-free buffer with 2 

mM EGTA as indicated (C, D). Vehicle for ionomycin (0.05% DMSO) was included. 

Exocytosis was normalized to the maximal release (in 25 mM Ca2+) from toxin-free 

controls (A, B) and to the values from toxin- and ionomycin-free control cells (C, D). 

Data plotted are means ± S.E.M; n ≥ 3; Student’s unpaired t-test: ***, p<0.001; **, 

p<0.01; N.S., p>0.05. 
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5.2.9 Capsaicin elicits a more persistent increase in [Ca2+]i than K+ depolarisation 

Fluorescence signals in cell bodies of randomly-selected TGNs, preloaded with Fluo 4-

AM, was monitored before and during continuous exposure to 60 mM K+, or 1 µM 

capsaicin; increased intensity indicates an elevation in [Ca2+]i.  Notably, in toxin-free 

control cells, there was a sharp increase in [Ca2+]i immediately after superfusion of 60 

mM K+, followed by decay to 50% of the peak within ~10 minutes (Fig. 5.11 A, B). A 

similarly sharp initial increase in [Ca2+]i was elicited with 1 µM capsaicin in majority 

of the cells, presumably the VR1 positive neurons. Although the increment in intensity 

was lower than that evoked by K+-depolarisation, the elevated fluorescence persisted 

longer in capsaicin-treated cells, with > 60% of the peak signal retained after 30 

minutes (Fig. 5.11 A, B). Consistent with this, the level of  45Ca2+ accumulation elicited 

by capsaicin was > 2-fold higher than that for 60 mM K+ at each time point with a 

plateau not being reached even after 30 minutes; in contrast, nearly all the 45Ca2+ 

uptake evoked by 60 mM K+ occurred within 10 minutes (Fig. 5.11 E).  

  It is noteworthy that pre-treatment with 100 nM BoNT/A (Fig. 5.11 C) or EA (Fig. 

5.11 D) did not alter the capsaicin-induced elevation of [Ca2+]i which was more 

persistent than that caused by K+ depolarisation. To ascertain if the prolonged increase 

in [Ca2+]i by capsaicin influences exocytosis, the time course of CGRP release was 

monitored (Fig. 5.11 F). In toxin-free control cells, ~ 50% of the maximum response 

occurred within 2 minutes of capsaicin application, rising to ~90% at 8 minutes and 

reaching a plateau level within 15 minutes. Capsaicin-triggered CGRP release from 

BoNT/A-treated cells was notably lower at early time points (p = 0.02, t = 2 minutes; 

unpaired 2-tailed Student’s t-test), even though the maximum amount finally released 

was only slightly lower than in the control (p = 0.2, t = 32 minutes).  Calculation of the 

increments in release over time (Fig. 5.11 F inset) illustrated that exocytosis initially 

occurred more rapidly in the control than /A-treated TGNs but decelerated faster (p = 

0.02, t = 2 minutes). These findings indicate that BoNT/A does not reduce the total 

amount of CGRP-containing vesicles that fuse since the same maximum levels were 

reached eventually (Fig. 5.11 F) but, rather, lower the apparent initial rate (Fig. 5.11 F 

inset). Thus, persistence of the Ca2+ signalling seems to be more important than [Ca2+]i 

for alleviating inhibition by BoNT/A in these sensory neurons. EA decreased the level 

of exocytosis much further than BoNT/A, with only a fraction of the total release seen 

after 30 minutes (Fig. 5.11 F). Collectively, our results accord with the relative 
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stabilities of SNARE complexes containing Sbr I, syntaxin and full-length or BoNT-

truncated SNAP-25. Removal of 26 C-terminal amino acids by EA prevents adoption 

of a stable SDS-resistant conformation and severely blocks CGRP release.  In contrast, 

/A-truncated SNAP-25 is shortened  by only 9 C-terminal residues and retains ability to 

form SDS-resistant complexes with its SNARE partners, but their stability is lower 

than complexes formed with uncleaved SNAP-25.  Hence, BoNT/A inhibits release but, 

under certain circumstances, exocytosis can be recovered, albeit retarded relative to 

non-toxin controls; apparently, brief elevation of [Ca2+]i is insufficient to elicit CGRP 

exocytosis but prolonged Ca2+- signals can eventually elicit as much release as from 

toxin-free controls.  These results are consistent with the notion that BoNT/A 

compromises the stability of pre-fusion SNARE complexes required for optimal rates 

of CGRP exocytosis.  
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Fig. 5.11 Capsaicin induces a less acute, but more prolonged, increase in [Ca2+]i 

than  K+-depolarisation which negates the blockade by BoNT/A of its CGRP 

triggered release. (A) Ratios of the fluorescent readings relative to basal value (f/f0), 

taken every 10 sec over 30 minutes, are plotted for the control cells (A), BoNT/A- (C) 

or EA- treated (D) TGNs, recorded under continuous stimulation by 60 mM [K+] (red), 

or 1 µM capsaicin (green) in basal buffer. The data are also expressed as % of 

maximal signal (B) for the control cells. Individual cells were randomly selected for 

analysis from 2 independent preparations and the values were pooled to give the 

average ± S.E.M. at each time point; n = 45, 61 for control cells stimulated by 1 µM 

capsaicin or 60 mM K+; 67, 46, BoNT/A-; 28, 52 for EA-treated cells. (E) The rates of 
45Ca uptake were measured for control cells in 3.5 mM K+ ( ) and those exposed to 1 

µM capsaicin ( ) or 60 mM K+ ( ) after incubation for the indicated periods at room 

temperature with 24 µCi/ml 45Ca. Following extensive washing, the cells were 

solubilized in 0.1% SDS buffer before counting in a β scintillation spectrometer. 

Capsaicin-induced 45Ca uptake over 32 minutes into TGNs was ~4 pmol/well from one 

representative experiment. (F) CGRP release over time was monitored from control 

cells ( ) or those treated for 24 hours with 100 nM BoNT/A ( ) or EA ( ), as 

described in Fig. 5.1. The rate of CGRP release (∆CGRP/∆t) was calculated and 

plotted in the inset. All data plotted in (E) and (F) are means ± S.E.M., n ≥ 3. 
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Fig. 5.11 

 

 
 

 

 

 131



5.3 Discussion 

The usefulness of BoTOX for the treatment of pain symptoms was revealed by the 

reduced frequency and intensity of migraines seen in some sufferers who had received 

injections of BOTOX® (Binder et al., 2000).  This accords with the attenuation by the 

toxin of capsaicin-induced pain in certain patient groups (Bach-Rojecky et al., 2005) 

and not others (Schulte-Mattler and Martinez-Castrillo, 2006; Tugnoli et al., 2007). In 

this context, it is noteworthy that capsaicin, a stimulant of sensory C-fibres, but not K+-

depolarisation can trigger secretion of pain mediators from BoNT/A-intoxicated 

sensory neurones in vitro. Although the exact mechanism for pain relief by BoNT/A 

remains to be deciphered, there is mounting evidence from animal and human studies 

for a direct action of the toxin on sensory neurons to abrogate the release of pain 

mediators  [(Cui et al., 2004) and reviewed by (Aoki, 2005)]. Therefore, identifying 

features of other toxin forms with ability to completely block exocytosis from sensory 

neurones evoked by all stimuli is highly desirable because the resultant findings could 

help pinpoint the underlying mechanism; moreover, it would be advantageous to 

incorporate these into any new BoNT-derived analgesic. It was hoped that use of 

BoNT/E would achieve this objective due to its removal of 17 more residues than 

deleted by /A from the C-terminus of SNAP-25, and because of its higher potency and 

faster neuroparalytic action at motor terminals (Lawrence and Dolly, 2002; Simpson 

and DasGupta, 1983).  Furthermore, the shorter lifetime of /E protease compared to 

type /A (Foran et al., 2003) could be advantageous for treatment of transient pain 

episodes [e.g. typical duration of pain in migraine is 1 to 3 days (Durham, 2006)], 

particularly in patients for whom such attacks are infrequent and prolonged inhibition 

may not be necessary. Disappointingly, in TGNs __ a convenient model of sensory 

neurons __ BoNT/E cleaved little SNAP-25 and gave no significant inhibition of CGRP 

release triggered by K+ or capsaicin, highlighting a lack of its high-affinity acceptor 

(presently unknown) or a productive uptake system. Nevertheless, it is suggestive of 

HC/E being useful for targetting to other neuron types in conditions where sensory 

inhibition needs to be avoided (eg. normalization of occular muscles).  

Knowing that /A can access TGNs, it was predicted that HC/A could mediate cell 

binding of HNLC/E leading to intra-neuronal delivery of LC/E.  Indeed, chimera EA 

was shown to bind to the /A acceptor SV2 (loop 4), enter the rat cultured CGNs almost 

as rapid as BoNT/E and faster than /A. Further investigation into a structural basis for 

the faster transport of BoNT/E protease relative to /A is fully warranted, considering 
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that development of the full therapeutic response to BoNT/A takes days to a week after 

injection (Ward and Barnes, 2007) and faster onset of paralysis would be a highly 

desirable property. Notably, chimera EA produces a more-broadly effective block of 

evoked CGRP exocytosis than BoNT/A, an important functional attribute. Moreover, 

this established a requirement for SNAP-25 in capsaicin-elicited peptide release from 

TGNs, as well as a C-terminal region of SNAP-25, the 17 amino acids between the 

scissile bonds for each toxin (residues 181-197), being critical. Deciphering a 

molecular basis for this difference in inhibition by EA and BoNT/A could give insights 

into the fundamentally important and ubiquitous mechanism of SNARE-driven 

membrane fusion; also, the outcomes should aid the designing of improved treatments 

for pain. The greater effectiveness of EA in blocking capsaicin-evoked exocytosis from 

TGNs correlates with the observed inability of /E cleaved SNAP-25 to form SDS-

resistant complexes with syntaxin I. This constrasts with SNAP-25A which can stably 

associate with syntaxin I; importantly, this was found to only occur in the presence of 

intact Sbr, a requirement not applicable to intact SNAP-25. In accord with these 

findings, in vitro studies have shown that BoNT/E more effectively reduces the 

stability of ternary SNARE complexes compared to /A (Hayashi et al., 1994), an effect 

attributed to the fact that only 3 of the 9 residues removed by BoNT/A are involved in 

the formation of coiled-coil α helical domains in the tenary SNARE complex whereas 

all of the extra 17 residues removed by BoNT/E are required (Sutton et al., 1998). It is 

noteworthy that syntaxin: SNAP-25 complexes represent an important intermediate 

that binds Sbr to form a meta-stable ternary complex before Ca2+ triggers a rapid 

‘zippering-up’ that is thought to drive membrane fusion (Wojcik and Brose, 2007). One 

possible interpretation of the inhibitory effect seen with BoNT/A is that pre-fusion 

complexes are destabilised, as reflected by Sbr being needed for the complexes to 

acquire resistance to SDS. Such a perturbation could reduce the probability of vesicle 

fusion, leading to a reduced rate of CGRP release (Fig. 5.11 F). This deduction is fully 

consistent with the finding that, given sufficient time, almost as much CGRP was 

released from BoNT/A-treated cells as from controls (see later). However, the question 

remains as to why secretory responses to K+-depolarisation (or bradykinin) are 

effectively blocked by BoNT/A if SNAP-25A retains some functional capacity? 

It is well established that the potent inhibition of neuromuscular transmission by 

BoNT/A can be attenuated by raising extracellular [Ca2+] or by increasing the Ca2+ 
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permeability of the nerve terminal membrane (Cull-Candy et al., 1976). Herein, it was 

found that capsaicin-evoked CGRP release was insensitive to BoNT/A and inhibition 

of K+-evoked CGRP release was overcome by either increasing the external [Ca2+] or 

by including the Ca2+-ionophore, ionomycin. Likewise, BoNT/A abolishes K+-evoked 

transmitter release from synaptosomes or neuroendocrine cells, but such blockade is 

alleviated if the cell membrane is rendered permeable to Ca2+ with ionophores or pore-

forming detergents (Ashton and Dolly, 1991; Lawrence et al., 1996). Hence, it has been 

postulated that BoNT/A blocks exocytosis by reducing the Ca2+-affinity of the Ca2+-

sensor for exocytosis and, in support of this notion, it has been found that a higher 

[Ca2+] is required to stimulate the binding of synaptotagmin (the putative Ca2+-sensor) 

to SNAP-25A than to uncleaved SNAP-25 in vitro (Gerona et al., 2000), although the 

significance of this interesting observation is unclear because ~100-fold higher [Ca2+] 

was required in the binding than needed to trigger exocytosis (also see below). 

However, this latest study showed that BoNT/A causes little change in [Ca2+]-

sensitivity of capsaicin-evoked release from TGNs. Accordingly, BoNT/A is known to 

have minimal effect on the [Ca2+]i-dependency for catecholamine release from 

permeabilised neuroendocrine cells (Gerona et al., 2000; Lawrence and Dolly, 2002), 

wherein [Ca2+]i can be tightly buffered by injection into nerve endings, and only 

slightly increases the [Ca2+]i needed for vesicle fusion (Sakaba et al., 2005). Moreover, 

the Ca2+-sensitivity for catecholamine secretion from neuroendocrine cells closely 

correlates with the cation requirements for inducing conformational changes in 

synaptotagmin 1 and SNAREs in situ, and the Ca2+-sensitivities for all of these 

phenomena are unaffected by BoNT/A (Lawrence and Dolly, 2002). A reasonable 

conclusion from these arguments is that BoNT/A does not, in fact, reduce the [Ca2+]-

affinity of the exocytotic apparatus and, therefore, the success of capsaicin in triggering 

CGRP release from BoNT/A-intoxicated TGNs is unlikely to be due to higher levels of 

[Ca2+]i being elicited than by stimuli that are unable to overcome inhibition by this 

toxin. Furthermore, K+-depolarisation actually induced larger peak increases of 

fluorescence intensity in Fluo 4-AM loaded TGNs than exposure to capsaicin.  

It is necessary, therefore, to consider other aspects of Ca2+-signalling that may underlie 

differences in response to capsaicin and K+-depolarisation. The spatial and temporal 

patterns of [Ca2+]i signals are important factors that influence the amount and rate of 

exocytosis from secretory cells (Augustine and Neher, 1992). Fluo 4-AM revealed that 

capsaicin induced a more persistent increase in [Ca2+]i  than K+, despite the initial peak 
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signal being somewhat lower in toxin free cells. Accordingly, over a 30 minutes period 

capsaicin stimulated > 2-fold more uptake of 45Ca2+ than 60 mM [K+] did not reach a 

plateau. Thus, capsaicin induces more persistent Ca2+ signals than K+-depolarisation. 

Persistent elevation of [Ca2+]i signals was shown herein to be critical for capsaicin and 

ionomycin (Durham and Russo, 2003) to elicit CGRP release from BoNT/A-

intoxicated neurons, in accord with studies demonstrating that this toxin slows the rate 

of vesicle release and causes a delay before vesicles start fusing (Sakaba et al., 2005). 

Such functional data are consistent with the notion that BoNT/A may destabilise a pre-

fusion SNARE complex (Fig. 5.9) required for the initial fast exocytotic burst (Wojcik 

and Brose, 2007; Xu et al., 1998). Spatial localisation of Ca2+ needs to be considered 

and the spatial pattern of Ca2+ signals is also likely to differ because capsaicin and K+-

depolarisation activate distince channels, ionomycin is a Ca2+-selective ionophore that 

acts on both the plasma and intracellular membranes (Morgan and Jacob, 1994), and 

the high-concentration microdomains may be distant from secretory vesicles, especially 

large-dense core granules (Augustine and Neher, 1992) like those that contain CGRP. 

Thus, the successful insertion of a different binding domain into BoNT/E: (i) endowed 

an ability to target to /E-insensitive neurons; (ii) produced a novel chimera capable of 

abolishing capsaicin- or ionomycin-elicited exocytosis of a pain mediator unlike /A 

whose inhibition is precluded by sustained elevation of [Ca2+]i and (iii) revealed a basis 

for the ability of /EA, but not /A, to totally block capsaicin-induced CGRP release i.e. 

BoNT/A- but not /E-truncated SNAP-25 can participate in the formation of SDS-

resistant SNARE complexes. This accords with observations on intact and truncated 

recombinant SNAREs (Hayashi et al., 1994) and findings that /A retards rather than 

prevents vesicle fusion in neurons (Sakaba et al., 2005).  
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6.0 Summary and recommendations for future work 
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6.1 The unique requirement of Sbr I for CGRP release from TGNs provides novel 

insights for designing new BoNT variants as anti-nociceptives  

In this thesis, Sbr I was found to be essential for evoked Ca2+-dependent CGRP release 

from TGNs (Chapter 4). For example, cleavage of Sbr II and III by BoNT/B and 

chimera BA in rat TGNs (I is resistant in this species) failed to block release of CGRP 

whereas it was inhibited in mouse neurons where Sbr I was also proteolysed. Knock-

down of Sbr I expression in mouse and rat TGNs led to a substantial reduction of 

CGRP release (Chapter 4). This demonstrated requirement of Sbr I in peptide release 

from LDCVs in sensory neurons contrasts with the ability of Sbr II / III to suffice for 

exocytosis of several neurotransmitters from SCSVs or, indeed, for secretion from 

granules in chromaffin cells and PC-12 cells (Foran et al., 2003; Lomneth et al., 1991). 

Such an unique feature of a dependence on Sbr I for CGRP exocytosis from TGNs may 

be related to this occurring at sites remote from the active zones (Bernardini et al., 

2004), enabling this pain mediator to reach blood vessels in the vicinity and activate its 

receptor thereon. In order to specifically target pain sensory neurons, novel BoNT 

forms which selectively cleave only Sbr I is fully warranted with the aid of insights 

gained from Sbr substrates, their recognition and cleavage (Chen et al., 2008; Sikorra et 

al., 2008). Modifications (mutations and/or deletions) of protease domains of Sbr-

cleaving BoNTs, which are responsible for individual isoform recognition and/or 

cleavage, might achieve a toxin only cleaving Sbr I. Such a toxin should not affect 

other neuron types because the latter seem to utilize Sbr II and/or III (see Chapter 4 

section 3). BoNT/D was demonstrated to be effective in blocking CGRP release 

elicited by all stimuli (Chapter 4), but the lack of its acceptor in human tissue makes it 

unsuitable for therapeutic purpose (Coffield et al., 1997). This could be resolved in 

future by engineering a new variant containing an acceptor binding domain shown to 

bind to TGNs with the protease of /D, known to cleave all the Sbr isoforms effectively 

blocking release of this pain peptide.  

 

6.2 Proof of principle was gained for desired toxin targeting from a novel BoNT 

EA chimera blocking capsaicin-evoked exocytosis of CGRP from TGNs much 

more effectively than /A or /E  

The ability of chimera EA to remove a further 17 residues from SNAP-25, in 

comparison to BoNT/A, yields a complete blockade of capsaicin-evoked CGRP release 
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rather than the negligible inhibition seen with /A (Chapter 5). EA is a more effective 

inhibitor of CGRP release from sensory neurones than either of its parents because it 

combines the superior /A property of cell binding via SV2 with the broader inhibitory 

capability of an /E protease that more effectively destabilises SNARE complexes. This 

demonstration of the successful substitution of the binding domain of /E with its 

counterpart from /A highlights the utility of protein engineering for retargetting 

BoNT/E to otherwise /E-insensitive cells. In a similar manner, the HC of tetanus toxin 

has been used to retarget diptheria toxin to neurones (Francis et al., 2000). As highly 

purified EA is easily prepared with good yield and, importantly, high potency, this 

technology represents a marked improvement over sensory targetting by chemical 

conjugation of Erythrina cristigalli lectin to the /A LC-HN fragment (Duggan et al., 

2002). The latter suffers from the drawbacks of inconsistent chemical conjugation, 

complex manufacturing procedure, product heterogeneity and low specific activity. 

However, as the BoNT/A acceptor SV2 is widely expressed in the nervous system, 

BoNT LC-HN fusions to polypeptide ligands for surface markers on specific neuronal 

system are now being developed for more specific targetting. A similar strategy has 

given encouraging results for targetting BoNT/C1 to lung epithilial cells with 

epidermal growth factor to inhibit mucus secretion (Foster et al., 2006). Further 

developments should incorporate the BoNT LC and translocation together with a 

specific acceptor binding moiety, a potential ligand for VR1, to selectively target 

nociceptive sensory neurons, the prime target of nociceptive C-fibres. The BoNT HN in 

this hybrid would form a channel allowing the attached LC protease to translocate to 

the cytosol, cleave its substrate and block neuro-exocytosis of the pain mediators 

(Koriazova and Montal, 2003).  

 

6.3 TGNs provide a natural BoNT/E acceptor null system for identify a putative 

/E acceptor 

Discovery of a protein acceptor for each serotype of BoNTs is another attractive and 

challenging project [reviewed in (Verderio et al., 2006)], especially for BoNT/E whose 

acceptor is known to be distinct from BoNT/A (Dolly et al., 1994; Mahrhold et al., 

2006). Lack of progress with investigations is in part due to a shortage of a suitable 

model system. The poor sensitivity of TGNs to BoNT/E (Chapter 5) is a novel feature, 

indicating a differential distribution of its unknown acceptor(s) in various neuronal 

systems. Thus, TGNs provide a natural null model for finding the specific /E acceptor, 
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in conjuncation with other highly susceptibable neurons i.e. CGNs (Chapter 5). With 

the aid of advanced substractive hybridization techniques, employing cDNA libraries 

encoding synaptic vesicle proteins derived from TGNs and CGNs might allow the 

putative protein acceptor for /E to be identified. 

 

6.4 The dependency of inhibition by BoNT of capsaicin-evoked CGRP release 

from nociceptive neurons on the persistence of intracellular [Ca2+]i warranted a 

more in-depth study 

Chimera EA, but not BoNT/A, blocks capsaicin-elicited CGRP release (Chapter 5). 

The existence of the /A- but not EA- truncated SNAP-25 in SNARE complex is a 

reasonable explaination for the more extensive inhibition of capsaicin-elicited 

exocytosis by EA than BoNT/A. Capsaicin stimulation elicites a greater and more 

persistent increase in [Ca2+]i than K+-depolarisation. Elevated [Ca2+]i was found to 

attenuate BoNT/A inhibition of CGRP release by slowing down the rate of vesicle 

release (Chapter 5); additionally, in moter nerve terminals, synaptosomes or 

neuroendocrine cell where [Ca2+]i was elevated upon addition of Ca2+ ionophore or 

pore-forming detergents, BoNT/A blockade was alleviated (Ashton and Dolly, 1991; 

Lawrence et al., 1996; Simpson, 1978). As capsaicin and K+-depolarisation activate 

distinct channels, and ionomycin is a Ca2+-selective ionophore that acts on both the 

plasma and intracellular membranes (Morgan and Jacob, 1994), the spatial Ca2+ 

localisation and pattern of Ca2+ signals are likely to differ. Future in-depth studies to 

address the relationship between Ca2+ entry events and transmitter release are 

warranted, perhaps, using a combination of patch-clamp, photo-sensitive Ca2+ chelators, 

Ca2+ reporter dyes and amperometry of loaded oxidisable ‘false transmitters’, similar to 

that described for chromaffin cells, DRGs and other neuron types (Chow et al., 1994; 

Sakaba et al., 2005; Zhang and Zhou, 2002), Tracking fluorescent-conjugated SNAREs 

upon vesicle fusion by intra- or inter- molecular fluorescence resonance energy transfer 

(An and Almers, 2004) might also shed light on the mechanisms governing CGRP 

release and its blockade by various BoNTs. 

  

In conclusion, this current study broadens the understanding of exocytosis of pain-

related peptides from nociceptive neurons, it contributes successful examples of proof 

of principle of the toxin targeting approach and opens a brand new scope for 
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controlling SNARE-dependent exocytosis in a wide variety of secretory disorder 

diseases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 140



References 

 

Aguado, F., Majo, G., Ruiz-Montasell, B., Llorens, J., Marsal, J. and Blasi, J. 
(1999). Syntaxin 1A and 1B display distinct distribution patterns in the rat 
peripheral nervous system. Neuroscience 88, 437-46. 

An, S. J. and Almers, W. (2004). Tracking SNARE complex formation in live 
endocrine cells. Science 306, 1042-6. 

Aoki, K. R. (2005). Review of a proposed mechanism for the antinociceptive action of 
botulinum toxin type A. Neurotoxicology 26, 785-93. 

Ashton, A. C. and Dolly, J. O. (1991). Microtubule-dissociating drugs and A23187 
reveal differences in the inhibition of synaptosomal transmitter release by 
botulinum neurotoxins types A and B. J Neurochem 56, 827-35. 

Ashton, A. C. and Dolly, J. O. (1997). Microtubules and microfilaments participate in 
the inhibition of synaptosomal noradrenaline release by tetanus toxin. J 
Neurochem 68, 649-58. 

Augustine, G. J. and Neher, E. (1992). Calcium requirements for secretion in bovine 
chromaffin cells. J Physiol 450, 247-71. 

Baccaglini, P. I. and Hogan, P. G. (1983). Some rat sensory neurons in culture 
express characteristics of differentiated pain sensory cells. Proc Natl Acad Sci 
U S A 80, 594-8. 

Bach-Rojecky, L., Relja, M. and Lackovic, Z. (2005). Botulinum toxin type A in 
experimental neuropathic pain. J Neural Transm 112, 215-9. 

Bajjalieh, S. M., Frantz, G. D., Weimann, J. M., McConnell, S. K. and Scheller, R. 
H. (1994). Differential expression of synaptic vesicle protein 2 (SV2) isoforms. 
J Neurosci 14, 5223-35. 

Bajjalieh, S. M., Peterson, K., Linial, M. and Scheller, R. H. (1993). Brain contains 
two forms of synaptic vesicle protein 2. Proc Natl Acad Sci U S A 90, 2150-4. 

Bajohrs, M., Rickman, C., Binz, T. and Davletov, B. (2004). A molecular basis 
underlying differences in the toxicity of botulinum serotypes A and E. EMBO 
Rep 5, 1090-5. 

Bautista, D. and Julius, D. (2008). Fire in the hole: pore dilation of the capsaicin 
receptor TRPV1. Nat Neurosci 11, 528-9. 

Berg, E. A., Johnson, R. J., Leeman, S. E., Boyd, N., Kimerer, L. and Fine, R. E. 
(2000). Isolation and characterization of substance P-containing dense core 
vesicles from rabbit optic nerve and termini. J Neurosci Res 62, 830-9. 

Bergquist, F., Niazi, H. S. and Nissbrandt, H. (2002). Evidence for different 
exocytosis pathways in dendritic and terminal dopamine release in vivo. Brain 
Res 950, 245-53. 

Bernardini, N., Neuhuber, W., Reeh, P. W. and Sauer, S. K. (2004). Morphological 
evidence for functional capsaicin receptor expression and calcitonin gene-
related peptide exocytosis in isolated peripheral nerve axons of the mouse. 
Neuroscience 126, 585-90. 

Binder, W. J., Brin, M. F., Blitzer, A., Schoenrock, L. D. and Pogoda, J. M. (2000). 
Botulinum toxin type A (BOTOX) for treatment of migraine headaches: an 
open-label study. Otolaryngol Head Neck Surg 123, 669-76. 

Binz, T., Blasi, J., Yamasaki, S., Baumeister, A., Link, E., Sudhof, T. C., Jahn, R. 
and Niemann, H. (1994). Proteolysis of SNAP-25 by types E and A botulinal 
neurotoxins. J Biol Chem 269, 1617-20. 

 141



Bird, G. C., Han, J. S., Fu, Y., Adwanikar, H., Willis, W. D. and Neugebauer, V. 
(2006). Pain-related synaptic plasticity in spinal dorsal horn neurons: role of 
CGRP. Mol Pain 2, 31. 

Black, J. D. and Dolly, J. O. (1986). Interaction of 125I-labeled botulinum 
neurotoxins with nerve terminals. II. Autoradiographic evidence for its uptake 
into motor nerves by acceptor-mediated endocytosis. J Cell Biol 103, 535-44. 

Bloedel, J. R. and McCreery, D. B. (1975). Organization of peripheral and central 
pain pathways. Surg Neurol 4, 65-81. 

Blumenfeld, A. (2003). Botulinum toxin type A as an effective prophylactic treatment 
in primary headache disorders. Headache 43, 853-60. 

Brain, S. D. and Grant, A. D. (2004). Vascular actions of calcitonin gene-related 
peptide and adrenomedullin. Physiol Rev 84, 903-34. 

Breese, N. M., George, A. C., Pauers, L. E. and Stucky, C. L. (2005). Peripheral 
inflammation selectively increases TRPV1 function in IB4-positive sensory 
neurons from adult mouse. Pain 115, 37-49. 

Brungerb, M. A. B. a. A. T. (2005). New insights into clostridial neurotoxin–SNARE 
interactions Trends in Molecular Medicine 11. 

Burgen, A. S. V., Dickens, F. and Zatman, L.J., . (1949). The action of botulinum 
toxin on the neuro-muscular junction. Journal of Physiology 109, 10–24. 

Caterina, M. J., Leffler, A., Malmberg, A. B., Martin, W. J., Trafton, J., Petersen-
Zeitz, K. R., Koltzenburg, M., Basbaum, A. I. and Julius, D. (2000). 
Impaired nociception and pain sensation in mice lacking the capsaicin receptor. 
Science 288, 306-13. 

Caterina, M. J., Schumacher, M. A., Tominaga, M., Rosen, T. A., Levine, J. D. 
and Julius, D. (1997). The capsaicin receptor: a heat-activated ion channel in 
the pain pathway. Nature 389, 816-24. 

Chai, Q., Arndt, J. W., Dong, M., Tepp, W. H., Johnson, E. A., Chapman, E. R. 
and Stevens, R. C. (2006). Structural basis of cell surface receptor recognition 
by botulinum neurotoxin B. Nature 444, 1096-100. 

Chapman, E. R., An, S., Barton, N. and Jahn, R. (1994). SNAP-25, a t-SNARE 
which binds to both syntaxin and synaptobrevin via domains that may form 
coiled coils. J Biol Chem 269, 27427-32. 

Chen, S., Hall, C. and Barbieri, J. T. (2008). Substrate recognition of VAMP-2 by 
botulinum neurotoxin B and tetanus neurotoxin. J Biol Chem. 

Chow, R. H., Klingauf, J. and Neher, E. (1994). Time course of Ca2+ concentration 
triggering exocytosis in neuroendocrine cells. Proc Natl Acad Sci U S A 91, 
12765-9. 

Chuang, H. H., Prescott, E. D., Kong, H., Shields, S., Jordt, S. E., Basbaum, A. I., 
Chao, M. V. and Julius, D. (2001). Bradykinin and nerve growth factor release 
the capsaicin receptor from PtdIns(4,5)P2-mediated inhibition. Nature 411, 
957-62. 

Chung MK, G. A., Caterina MJ. (2008). TRPV1 shows dynamic ionic selectivity 
during agonist stimulation. Nat Neurosci. 11. 

Coffield, J. A., Bakry, N., Zhang, R. D., Carlson, J., Gomella, L. G. and Simpson, 
L. L. (1997). In vitro characterization of botulinum toxin types A, C and D 
action on human tissues: combined electrophysiologic, pharmacologic and 
molecular biologic approaches. J Pharmacol Exp Ther 280, 1489-98. 

Cortright, D. N. and Szallasi, A. (2004). Biochemical pharmacology of the vanilloid 
receptor TRPV1. An update. Eur J Biochem 271, 1814-9. 

 142



Cui, M., Khanijou, S., Rubino, J. and Aoki, K. R. (2004). Subcutaneous 
administration of botulinum toxin A reduces formalin-induced pain. Pain 107, 
125-33. 

Cull-Candy, S. G., Lundh, H. and Thesleff, S. (1976). Effects of botulinum toxin on 
neuromuscular transmission in the rat. J Physiol 260, 177-203. 

Davletov, B., Bajohrs, M. and Binz, T. (2005). Beyond BOTOX: advantages and 
limitations of individual botulinum neurotoxins. Trends Neurosci 28, 446-52. 

De Biasi, S. and Rustioni, A. (1988). Glutamate and substance P coexist in primary 
afferent terminals in the superficial laminae of spinal cord. Proc Natl Acad Sci 
U S A 85, 7820-4. 

Dolly, J. O. (2005). Molecular definition of neuronal targets for novel 
neurotherapeutics: SNAREs and Kv1 channels. Neurotoxicology 26, 753-60. 

Dolly, J. O., Black, J., Williams, R. S. and Melling, J. (1984). Acceptors for 
botulinum neurotoxin reside on motor nerve terminals and mediate its 
internalization. Nature 307, 457-60. 

Dolly, J. O., de Paiva, A., Foran, P., Lawrence, G., Daniels-Holgate, P. and Ashton, 
A. C. (1994). Probing the process of transmitter release with botulinum and 
tetanus neurotoxins. Seminars in the Neurosciences 6, 149-158. 

Dolly, J. O. and Lawrence, G. (2007). Mechanistic basis for the therapeutic 
effectiveness of botulinum toxin A on over-active cholinergic nerves. In 
Clincial Uses of Botulinum Toxins,  (eds A. B. Ward and M. P. Barnes), pp. 9-
25. Cambridge: Cambridge University Press. 

Dong, M., Richards, D. A., Goodnough, M. C., Tepp, W. H., Johnson, E. A. and 
Chapman, E. R. (2003). Synaptotagmins I and II mediate entry of botulinum 
neurotoxin B into cells. J Cell Biol 162, 1293-303. 

Dong, M., Yeh, F., Tepp, W. H., Dean, C., Johnson, E. A., Janz, R. and Chapman, 
E. R. (2006). SV2 is the protein receptor for botulinum neurotoxin A. Science 
312, 592-6. 

Doods, H., Arndt, K., Rudolf, K. and Just, S. (2007). CGRP antagonists: unravelling 
the role of CGRP in migraine. Trends Pharmacol Sci 28, 580-7. 

Duggan, M. J., Quinn, C. P., Chaddock, J. A., Purkiss, J. R., Alexander, F. C., 
Doward, S., Fooks, S. J., Friis, L. M., Hall, Y. H., Kirby, E. R. et al. (2002). 
Inhibition of release of neurotransmitters from rat dorsal root ganglia by a novel 
conjugate of a Clostridium botulinum toxin A endopeptidase fragment and 
Erythrina cristagalli lectin. J Biol Chem 277, 34846-52. 

Durham, P. L. (2006). Calcitonin gene-related peptide (CGRP) and migraine. 
Headache 46 Suppl 1, S3-8. 

Durham, P. L. and Cady, R. (2004). Regulation of calcitonin gene-related peptide 
secretion from trigeminal nerve cells by botulinum toxin type A: implications 
for migraine therapy. Headache 44, 35-42; discussion 42-3. 

Durham, P. L. and Russo, A. F. (1999). Regulation of calcitonin gene-related peptide 
secretion by a serotonergic antimigraine drug. J Neurosci 19, 3423-9. 

Durham, P. L. and Russo, A. F. (2003). Stimulation of the calcitonin gene-related 
peptide enhancer by mitogen-activated protein kinases and repression by an 
antimigraine drug in trigeminal ganglia neurons. J Neurosci 23, 807-15. 

Eckert, S. P., Taddese, A. and McCleskey, E. W. (1997). Isolation and culture of rat 
sensory neurons having distinct sensory modalities. J Neurosci Methods 77, 
183-90. 

Edvinsson, L. (2004). Blockade of CGRP receptors in the intracranial vasculature: a 
new target in the treatment of headache. Cephalalgia 24, 611-22. 

 143



Edvinsson, L. (2007). Novel migraine therapy with calcitonin gene-regulated peptide 
receptor antagonists. Expert Opin Ther Targets 11, 1179-88. 

Ermengem, E. v. (1897). Ueber einen neuen anaeroben Bacillus und seine 
Beziehungen zum Botulismus. Zeitschrift fur Hyg und Infektionskr-ankheiten 
26, 1–56. 

Farinelli, I., Coloprisco, G., De Filippis, S. and Martelletti, P. (2006). Long-term 
benefits of botulinum toxin type A (BOTOX) in chronic daily headache: a five-
year long experience. J Headache Pain 7, 407-12. 

Ferrer-Montiel, A., Garcia-Martinez, C., Morenilla-Palao, C., Garcia-Sanz, N., 
Fernandez-Carvajal, A., Fernandez-Ballester, G. and Planells-Cases, R. 
(2004). Molecular architecture of the vanilloid receptor. Insights for drug 
design. Eur J Biochem 271, 1820-6. 

Foran, P., Lawrence, G. and Dolly, J. O. (1995). Blockade by botulinum neurotoxin 
B of catecholamine release from adrenochromaffin cells correlates with its 
cleavage of synaptobrevin and a homologue present on the granules. 
Biochemistry 34, 5494-503. 

Foran, P. G., Mohammed, N., Lisk, G. O., Nagwaney, S., Lawrence, G. W., 
Johnson, E., Smith, L., Aoki, K. R. and Dolly, J. O. (2003). Evaluation of the 
therapeutic usefulness of botulinum neurotoxin B, C1, E, and F compared with 
the long lasting type A. Basis for distinct durations of inhibition of exocytosis 
in central neurons. J Biol Chem 278, 1363-71. 

Foster, K. A., Adams, E. J., Durose, L., Cruttwell, C. J., Marks, E., Shone, C. C., 
Chaddock, J. A., Cox, C. L., Heaton, C., Sutton, J. M. et al. (2006). Re-
engineering the target specificity of Clostridial neurotoxins - a route to novel 
therapeutics. Neurotox Res 9, 101-7. 

Francis, J. W., Brown, R. H., Jr., Figueiredo, D., Remington, M. P., Castillo, O., 
Schwarzschild, M. A., Fishman, P. S., Murphy, J. R. and vanderSpek, J. C. 
(2000). Enhancement of diphtheria toxin potency by replacement of the 
receptor binding domain with tetanus toxin C-fragment: a potential vector for 
delivering heterologous proteins to neurons. J Neurochem 74, 2528-36. 

Freund, B. and Schwartz, M. (2003). Temporal relationship of muscle weakness and 
pain reduction in subjects treated with botulinum toxin A. J Pain 4, 159-65. 

Fusayasu, E., Kowa, H., Takeshima, T., Nakaso, K. and Nakashima, K. (2007). 
Increased plasma substance P and CGRP levels, and high ACE activity in 
migraineurs during headache-free periods. Pain 128, 209-14. 

Gazerani, P., Staahl, C., Drewes, A. M. and Arendt-Nielsen, L. (2006). The effects 
of Botulinum Toxin type A on capsaicin-evoked pain, flare, and secondary 
hyperalgesia in an experimental human model of trigeminal sensitization. Pain 
122, 315-25. 

Gerona, R. R., Larsen, E. C., Kowalchyk, J. A. and Martin, T. F. (2000). The C 
terminus of SNAP25 is essential for Ca(2+)-dependent binding of 
synaptotagmin to SNARE complexes. J Biol Chem 275, 6328-36. 

Goadsby, P. J. and Edvinsson, L. (1993). The trigeminovascular system and migraine: 
studies characterizing cerebrovascular and neuropeptide changes seen in 
humans and cats. Ann Neurol 33, 48-56. 

Goadsby, P. J., Lipton, R. B. and Ferrari, M. D. (2002). Migraine--current 
understanding and treatment. N Engl J Med 346, 257-70. 

Guo, A., Vulchanova, L., Wang, J., Li, X. and Elde, R. (1999). 
Immunocytochemical localization of the vanilloid receptor 1 (VR1): 

 144



relationship to neuropeptides, the P2X3 purinoceptor and IB4 binding sites. Eur 
J Neurosci 11, 946-58. 

Gupta, V. K. (2005). Botulinum toxin type A therapy for chronic tension-type 
headache: fact versus fiction. Pain 116, 166-7; author reply 167. 

Hayashi, T., McMahon, H., Yamasaki, S., Binz, T., Hata, Y., Sudhof, T. C. and 
Niemann, H. (1994). Synaptic vesicle membrane fusion complex: action of 
clostridial neurotoxins on assembly. EMBO Journal 13, 5051-61. 

Hole, K. and Berge, O. G. (1981). Regulation of pain sensitivity in the central nervous 
system. Cephalalgia 1, 51-9. 

Hua, S. Y., Raciborska, D. A., Trimble, W. S. and Charlton, M. P. (1998). 
Different VAMP/synaptobrevin complexes for spontaneous and evoked 
transmitter release at the crayfish neuromuscular junction. Journal of 
Neurophysiology 80, 3233-46. 

Humeau, Y., Doussau, F., Grant, N. J. and Poulain, B. (2000). How botulinum and 
tetanus neurotoxins block neurotransmitter release. Biochimie 82, 427-46. 

Jankovic, J. (2004). Treatment of cervical dystonia with botulinum toxin. Mov Disord 
19 Suppl 8, S109-15. 

Janz, R., Hofmann, K. and Sudhof, T. C. (1998). SVOP, an evolutionarily conserved 
synaptic vesicle protein, suggests novel transport functions of synaptic vesicles. 
J Neurosci 18, 9269-81. 

Janz, R. and Sudhof, T. C. (1999). SV2C is a synaptic vesicle protein with an 
unusually restricted localization: anatomy of a synaptic vesicle protein family. 
Neuroscience 94, 1279-90. 

Jin, R., Rummel, A., Binz, T. and Brunger, A. T. (2006). Botulinum neurotoxin B 
recognizes its protein receptor with high affinity and specificity. Nature 444, 
1092-5. 

Kapoor, K., Saxena, P. (2004). Olcegepant. Drugs Fut 29, 1088. 
Karai, L. J., Russell, J. T., Iadarola, M. J. and Olah, Z. (2004). Vanilloid receptor 1 

regulates multiple calcium compartments and contributes to Ca2+-induced 
Ca2+ release in sensory neurons. J Biol Chem 279, 16377-87. 

Kasai, M., Kumazawa, T. and Mizumura, K. (1998). Nerve growth factor increases 
sensitivity to bradykinin, mediated through B2 receptors, in capsaicin-sensitive 
small neurons cultured from rat dorsal root ganglia. Neurosci Res 32, 231-9. 

Keller, J. E., Cai, F. and Neale, E. A. (2004). Uptake of botulinum neurotoxin into 
cultured neurons. Biochemistry 43, 526-32. 

Keller, J. E. and Neale, E. A. (2001). The role of the synaptic protein snap-25 in the 
potency of botulinum neurotoxin type A. J Biol Chem 276, 13476-82. 

Kim, H., Lee, Y., Weiner, D., Kaye, R., Cahill, A. M. and Yudkoff, M. (2006). 
Botulinum toxin type a injections to salivary glands: combination with single 
event multilevel chemoneurolysis in 2 children with severe spastic quadriplegic 
cerebral palsy. Arch Phys Med Rehabil 87, 141-4. 

Koriazova, L. K. and Montal, M. (2003). Translocation of botulinum neurotoxin light 
chain protease through the heavy chain channel. Nat Struct Biol 10, 13-8. 

Kummer, W. (1992). Ultrastructure of calcitonin gene-related peptide-immunoreactive 
nerve fibres in guinea-pig peribronchial ganglia. Regul Pept 37, 135-42. 

Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R. and Stevens, R. C. (1998). 
Crystal structure of botulinum neurotoxin type A and implications for toxicity. 
Nat Struct Biol 5, 898-902. 

 145



Lawrence, G., Wang, J., Chion, C. K., Aoki, K. R. and Dolly, J. O. (2007). Two 
protein trafficking processes at motor nerve endings unveiled by botulinum 
neurotoxin E. J Pharmacol Exp Ther 320, 410-8. 

Lawrence, G. W. and Dolly, J. O. (2002). Multiple forms of SNARE complexes in 
exocytosis from chromaffin cells: effects of Ca(2+), MgATP and botulinum 
toxin type A. J Cell Sci 115, 667-73. 

Lawrence, G. W., Foran, P. and Dolly, J. O. (1996). Distinct exocytotic responses of 
intact and permeabilised chromaffin cells after cleavage of the 25-kDa 
synaptosomal-associated protein (SNAP-25) or synaptobrevin by botulinum 
toxin A or B. Eur J Biochem 236, 877-86. 

Levy, D., Jakubowski, M. and Burstein, R. (2004). Disruption of communication 
between peripheral and central trigeminovascular neurons mediates the 
antimigraine action of 5HT 1B/1D receptor agonists. Proc Natl Acad Sci U S A 
101, 4274-9. 

Littleton, J. T., Bai, J., Vyas, B., Desai, R., Baltus, A. E., Garment, M. B., Carlson, 
S. D., Ganetzky, B. and Chapman, E. R. (2001). synaptotagmin mutants 
reveal essential functions for the C2B domain in Ca2+-triggered fusion and 
recycling of synaptic vesicles in vivo. J Neurosci 21, 1421-33. 

Liu, Y., Zhang, M., Broman, J. and Edvinsson, L. (2003). Central projections of 
sensory innervation of the rat superficial temporal artery. Brain Res 966, 126-
33. 

Lomneth, R., Martin, T. F. and DasGupta, B. R. (1991). Botulinum neurotoxin light 
chain inhibits norepinephrine secretion in PC12 cells at an intracellular 
membranous or cytoskeletal site. Journal of Neurochemistry 57, 1413-21. 

Mahrhold, S., Rummel, A., Bigalke, H., Davletov, B. and Binz, T. (2006). The 
synaptic vesicle protein 2C mediates the uptake of botulinum neurotoxin A into 
phrenic nerves. FEBS Letters 580, 2011-4. 

Malin, S. A., Davis, B. M. and Molliver, D. C. (2007). Production of dissociated 
sensory neuron cultures and considerations for their use in studying neuronal 
function and plasticity. Nat Protoc 2, 152-60. 

Matteoli, M., Takei, K., Perin, M. S., Sudhof, T. C. and De Camilli, P. (1992). Exo-
endocytotic recycling of synaptic vesicles in developing processes of cultured 
hippocampal neurons. J Cell Biol 117, 849-61. 

Mauskop, A. (2002). The use of botulinum toxin in the treatment of headaches. Curr 
Pain Headache Rep 6, 320-3. 

McCulloch, J., Uddman, R., Kingman, T. A. and Edvinsson, L. (1986). Calcitonin 
gene-related peptide: functional role in cerebrovascular regulation. Proc Natl 
Acad Sci U S A 83, 5731-5. 

McInnes, C. and Dolly, J. O. (1990). Ca2(+)-dependent noradrenaline release from 
permeabilised PC12 cells is blocked by botulinum neurotoxin A or its light 
chain. FEBS Lett 261, 323-6. 

Mehrotra, S., Gupta, S., Chan, K. Y., Villalon, C. M., Centurion, D., Saxena, P. R. 
and Maassenvandenbrink, A. (2008). Current and prospective 
pharmacological targets in relation to antimigraine action. Naunyn 
Schmiedebergs Arch Pharmacol. 

Menezes, C., Rodrigues, B., Magalhaes, E. and Melo, A. (2007). Botulinum toxin 
type A in refractory chronic migraine: an open-label trial. Arq Neuropsiquiatr 
65, 596-8. 

 146



Mitsuhashi, M., Ohashi, Y., Shichijo, S., Christian, C., Sudduth-Klinger, J., 
Harrowe, G. and Payan, D. G. (1992). Multiple intracellular signaling 
pathways of the neuropeptide substance P receptor. J Neurosci Res 32, 437-43. 

Montecucco, C. and Schiavo, G. (1994). Mechanism of action of tetanus and 
botulinum neurotoxins. Mol Microbiol 13, 1-8. 

Morgan, A. J. and Jacob, R. (1994). Ionomycin enhances Ca2+ influx by stimulating 
store-regulated cation entry and not by a direct action at the plasma membrane. 
Biochem J 300 ( Pt 3), 665-72. 

Munson, C. M. C. M. (2007). Tag team action at the synapse. EMBO reports 8, 834–
838  

Nystuen, A. M., Schwendinger, J. K., Sachs, A. J., Yang, A. W. and Haider, N. B. 
(2007). A null mutation in VAMP1/synaptobrevin is associated with 
neurological defects and prewean mortality in the lethal-wasting mouse mutant. 
Neurogenetics 8, 1-10. 

O'Connor, T. P. and van der Kooy, D. (1988). Enrichment of a vasoactive 
neuropeptide (calcitonin gene related peptide) in the trigeminal sensory 
projection to the intracranial arteries. J Neurosci 8, 2468-76. 

Olesen, J. and Lipton, R. B. (2004). Headache classification update 2004. Curr Opin 
Neurol 17, 275-82. 

Otto, H., Hanson, P. I. and Jahn, R. (1997). Assembly and disassembly of a ternary 
complex of synaptobrevin, syntaxin, and SNAP-25 in the membrane of synaptic 
vesicles. Proceedings of the National Academy of Sciences of the United States 
of America 94, 6197-201. 

Pellizzari, R., Rossetto, O., Schiavo, G. and Montecucco, C. (1999). Tetanus and 
botulinum neurotoxins: mechanism of action and therapeutic uses. Philos Trans 
R Soc Lond B Biol Sci 354, 259-68. 

Popoff, M. R., Marvaud, J. C. and Raffestin, S. (2001). [Mechanism of action and 
therapeutic uses of botulinum and tetanus neurotoxins]. Ann Pharm Fr 59, 176-
90. 

Poyner, D. R., Sexton, P. M., Marshall, I., Smith, D. M., Quirion, R., Born, W., 
Muff, R., Fischer, J. A. and Foord, S. M. (2002). International Union of 
Pharmacology. XXXII. The mammalian calcitonin gene-related peptides, 
adrenomedullin, amylin, and calcitonin receptors. Pharmacol Rev 54, 233-46. 

Prado, M. A., Evans-Bain, B. and Dickerson, I. M. (2002). Receptor component 
protein (RCP): a member of a multi-protein complex required for G-protein-
coupled signal transduction. Biochem Soc Trans 30, 460-4. 

Price, T. J., Louria, M. D., Candelario-Soto, D., Dussor, G. O., Jeske, N. A., 
Patwardhan, A. M., Diogenes, A., Trott, A. A., Hargreaves, K. M. and 
Flores, C. M. (2005). Treatment of trigeminal ganglion neurons in vitro with 
NGF, GDNF or BDNF: effects on neuronal survival, neurochemical properties 
and TRPV1-mediated neuropeptide secretion. BMC Neurosci 6, 4. 

Purkiss, J., Welch, M., Doward, S. and Foster, K. (2000). Capsaicin-stimulated 
release of substance P from cultured dorsal root ganglion neurons: involvement 
of two distinct mechanisms. Biochem Pharmacol 59, 1403-6. 

Rummel, A., Karnath, T., Henke, T., Bigalke, H. and Binz, T. (2004). 
Synaptotagmins I and II act as nerve cell receptors for botulinum neurotoxin G. 
J Biol Chem 279, 30865-70. 

Sakaba, T., Stein, A., Jahn, R. and Neher, E. (2005). Distinct kinetic changes in 
neurotransmitter release after SNARE protein cleavage. Science 309, 491-4. 

 147



Salvatore, C. A., Hershey, J. C., Corcoran, H. A., Fay, J. F., Johnston, V. K., 
Moore, E. L., Mosser, S. D., Burgey, C. S., Paone, D. V., Shaw, A. W. et al. 
(2008). Pharmacological characterization of MK-0974 [N-[(3R,6S)-6-(2,3-
difluorophenyl)-2-oxo-1-(2,2,2-trifluoroethyl)azepan-3- yl]-4-(2-oxo-2,3-
dihydro-1H-imidazo[4,5-b]pyridin-1-yl)piperidine-1-carbox amide], a potent 
and orally active calcitonin gene-related peptide receptor antagonist for the 
treatment of migraine. J Pharmacol Exp Ther 324, 416-21. 

Schantz, E. (1994). Historical perspective. In: J Jankovic and M Hallet, Editors, 
Therapy With Botulinum Toxin, : Marcel Dekker Inc, New York, NY xxiii–
xxvi. 

Schiavo, G., Benfenati, F., Poulain, B., Rossetto, O., Polverino de Laureto, P., 
DasGupta, B. R. and Montecucco, C. (1992). Tetanus and botulinum-B 
neurotoxins block neurotransmitter release by proteolytic cleavage of 
synaptobrevin. Nature 359, 832-5. 

Schiavo, G., Matteoli, M. and Montecucco, C. (2000). Neurotoxins affecting 
neuroexocytosis. Physiol Rev 80, 717-66. 

Schiavo, G., Shone, C. C., Bennett, M. K., Scheller, R. H. and Montecucco, C. 
(1995). Botulinum neurotoxin type C cleaves a single Lys-Ala bond within the 
carboxyl-terminal region of syntaxins. Journal of Biological Chemistry 270, 
10566-70. 

Schiavo, G., Stenbeck, G., Rothman, J. E. and Sollner, T. H. (1997). Binding of the 
synaptic vesicle v-SNARE, synaptotagmin, to the plasma membrane t-SNARE, 
SNAP-25, can explain docked vesicles at neurotoxin-treated synapses. Proc 
Natl Acad Sci U S A 94, 997-1001. 

Schoch, S., Deak, F., Konigstorfer, A., Mozhayeva, M., Sara, Y., Sudhof, T. C. and 
Kavalali, E. T. (2001). SNARE function analyzed in synaptobrevin/VAMP 
knockout mice. Science 294, 1117-22. 

Schulte-Mattler, W. J. and Martinez-Castrillo, J. C. (2006). Botulinum toxin 
therapy of migraine and tension-type headache: comparing different botulinum 
toxin preparations. Eur J Neurol 13 Suppl 1, 51-4. 

Sikorra, S., Henke, T., Galli, T. and Binz, T. (2008). Substrate recognition 
mechanism of VAMP/synaptobrevin cleaving clostridial neurotoxins. J Biol 
Chem. 

Silberstein, S., Mathew, N., Saper, J. and Jenkins, S. (2000). Botulinum toxin type 
A as a migraine preventive treatment. For the BOTOX Migraine Clinical 
Research Group. Headache 40, 445-50. 

Silberstein, S. D. and Aoki, K. R. (2003). Botulinum toxin type A: myths, facts, and 
current research. Headache 43 Suppl 1, S1. 

Simpson, L. L. (1978). Pharmacological studies on the subcellular site of action of 
botulinum toxin type A. J Pharmacol Exp Ther 206, 661-9. 

Simpson, L. L. (1979). The action of botulinal toxin. Rev Infect Dis 1, 656-62. 
Simpson, L. L. (1980). Kinetic studies on the interaction between botulinum toxin type 

A and the cholinergic neuromuscular junction. J Pharmacol Exp Ther 212, 16-
21. 

Simpson, L. L. (2004). Identification of the major steps in botulinum toxin action. 
Annu Rev Pharmacol Toxicol 44, 167-93. 

Simpson, L. L. and DasGupta, B. R. (1983). Botulinum neurotoxin type E: studies on 
mechanism of action and on structure-activity relationships. J Pharmacol Exp 
Ther 224, 135-40. 

 148



Skofitsch, G. and Jacobowitz, D. M. (1985). Calcitonin gene-related peptide coexists 
with substance P in capsaicin sensitive neurons and sensory ganglia of the rat. 
Peptides 6, 747-54. 

Steranka, L. R., Manning, D. C., DeHaas, C. J., Ferkany, J. W., Borosky, S. A., 
Connor, J. R., Vavrek, R. J., Stewart, J. M. and Snyder, S. H. (1988). 
Bradykinin as a pain mediator: receptors are localized to sensory neurons, and 
antagonists have analgesic actions. Proc Natl Acad Sci U S A 85, 3245-9. 

Stevens, R. C., Evenson, M. L., Tepp, W. and DasGupta, B. R. (1991). 
Crystallization and preliminary X-ray analysis of botulinum neurotoxin type A. 
J Mol Biol 222, 877-80. 

Stucky, C. L., Rossi, J., Airaksinen, M. S. and Lewin, G. R. (2002). GFR 
alpha2/neurturin signalling regulates noxious heat transduction in isolectin B4-
binding mouse sensory neurons. J Physiol 545, 43-50. 

Sutton, R. B., Fasshauer, D., Jahn, R. and Brunger, A. T. (1998). Crystal structure 
of a SNARE complex involved in synaptic exocytosis at 2.4 A resolution. 
Nature 395, 347-53. 

Suzuki, K., Iizuka, T. and Sakai, F. (2007). Botulinum toxin type A for migraine 
prophylaxis in the Japanese population: an open-label prospective trial. Intern 
Med 46, 959-63. 

Swaminathan, S. and Eswaramoorthy, S. (2000). Crystallization and preliminary X-
ray analysis of Clostridium botulinum neurotoxin type B. Acta Crystallogr D 
Biol Crystallogr 56, 1024-6. 

Szallasi, A. and Blumberg, P. M. (1999). Vanilloid (Capsaicin) receptors and 
mechanisms. Pharmacol Rev 51, 159-212. 

Takamori, S., Holt, M., Stenius, K., Lemke, E. A., Gronborg, M., Riedel, D., 
Urlaub, H., Schenck, S., Brugger, B., Ringler, P. et al. (2006). Molecular 
anatomy of a trafficking organelle. Cell 127, 831-46. 

Tominaga, M., Caterina, M. J., Malmberg, A. B., Rosen, T. A., Gilbert, H., 
Skinner, K., Raumann, B. E., Basbaum, A. I. and Julius, D. (1998). The 
cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21, 
531-43. 

Trimble, W. S., Gray, T. S., Elferink, L. A., Wilson, M. C. and Scheller, R. H. 
(1990). Distinct patterns of expression of two VAMP genes within the rat brain. 
Journal of Neuroscience 10, 1380-7. 

Trojanowski, J. Q., Walkenstein, N. and Lee, V. M. (1986). Expression of 
neurofilament subunits in neurons of the central and peripheral nervous system: 
an immunohistochemical study with monoclonal antibodies. J Neurosci 6, 650-
60. 

Tsukamoto, K., Kohda, T., Mukamoto, M., Takeuchi, K., Ihara, H., Saito, M. and 
Kozaki, S. (2005). Binding of Clostridium botulinum type C and D neurotoxins 
to ganglioside and phospholipid. Novel insights into the receptor for clostridial 
neurotoxins. J Biol Chem 280, 35164-71. 

Tugnoli, V., Capone, J. G., Eleopra, R., Quatrale, R., Sensi, M., Gastaldo, E., Tola, 
M. R. and Geppetti, P. (2007). Botulinum toxin type A reduces capsaicin-
evoked pain and neurogenic vasodilatation in human skin. Pain 130, 76-83. 

Verderio, C., Pozzi, D., Pravettoni, E., Inverardi, F., Schenk, U., Coco, S., Proux-
Gillardeaux, V., Galli, T., Rossetto, O., Frassoni, C. et al. (2004). SNAP-25 
modulation of calcium dynamics underlies differences in GABAergic and 
glutamatergic responsiveness to depolarization. Neuron 41, 599-610. 

 149



Verderio, C., Rossetto, O., Grumelli, C., Frassoni, C., Montecucco, C. and 
Matteoli, M. (2006). Entering neurons: botulinum toxins and synaptic vesicle 
recycling. EMBO Rep 7, 995-9. 

Voller, B., Sycha, T., Gustorff, B., Schmetterer, L., Lehr, S., Eichler, H. G., Auff, 
E. and Schnider, P. (2003). A randomized, double-blind, placebo controlled 
study on analgesic effects of botulinum toxin A. Neurology 61, 940-4. 

Wang, J., Meng, J., Lawrence, G. W., Zurawski, T. H., Sasse, A., Bodeker, M. O., 
Gilmore, M. A., Fernandez-Salas, E., Francis, J., Steward, L. E. et al. 
(2008). Novel chimeras of botulinum neurotoxin /A and /E unveil contributions 
from the binding, translocation and protease domains to their functional 
characteristics. J Biol Chem. 

Ward, A. B. and Barnes, M. P. (2007). Clinical Uses of Botulinum Toxins. 
Cambridge: Cambridge University Press. 

Welch, M. J., Purkiss, J. R. and Foster, K. A. (2000). Sensitivity of embryonic rat 
dorsal root ganglia neurons to Clostridium botulinum neurotoxins. Toxicon 38, 
245-58. 

Wojcik, S. M. and Brose, N. (2007). Regulation of membrane fusion in synaptic 
excitation-secretion coupling: speed and accuracy matter. Neuron 55, 11-24. 

Woolf, C. J. (2004). Pain: moving from symptom control toward mechanism-specific 
pharmacologic management. Ann Intern Med 140, 441-51. 

Woolf, C. J. and Ma, Q. (2007). Nociceptors--noxious stimulus detectors. Neuron 55, 
353-64. 

Xu, T., Binz, T., Niemann, H. and Neher, E. (1998). Multiple kinetic components of 
exocytosis distinguished by neurotoxin sensitivity. Nat Neurosci 1, 192-200. 

Yamasaki, S., Baumeister, A., Binz, T., Blasi, J., Link, E., Cornille, F., Roques, B., 
Fykse, E. M., Sudhof, T. C., Jahn, R. et al. (1994). Cleavage of members of 
the synaptobrevin/VAMP family by types D and F botulinal neurotoxins and 
tetanus toxin. J Biol Chem 269, 12764-72. 

Zhang, C. and Zhou, Z. (2002). Ca(2+)-independent but voltage-dependent secretion 
in mammalian dorsal root ganglion neurons. Nat Neurosci 5, 425-30. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 150



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Appendix 
List of Suppliers 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 151



 
 

 
 Company Country Web
A    
 Abcam Ltd. UK www.abcam.com

 
Amersham GE 
Healthcare UK http://www.amersham.com/

B      
 Biosciences  Ireland www.biosciences.ie
C       

 

Cayman 
Chemical (order 
through SPI-
BIO) France www.spibio.com

 
Chemicon 
Europe Ltd. UK www.chemicon.com

G       

 

Gibco (order 
through 
Biosciences) Ireland www.biosciences.ie

I       

 

Invitrogen 
(order through 
Biosciences) Ireland www.biosciences.ie

J       

 

Jackson 
Immunoresearch 
Europe UK http://www.jireurope.com/home.asp

M      

 
Millipore (order 
through AGB) Ireland www.agb.ie

 

Molecular 
Probes (order 
through 
Biosciences) Ireland www.biosciences.ie

N      
 Neuromics Inc USA www.neuromics.com
P      

 
Phoenix Europe 
GmbH Germany www.phoenixpeptide.com

 

Pierce (order 
through Medical 
Supply 
Company Ltd.) Ireland www.medical-supply.ie

S       

 

Santa Cruz 
(order through 
Fannin) Ireland http://www.fanninhealthcare.com/
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Sternberger 
Monoclonals 
Inc. USA www.sternbergermonoclonals.com

 
Synaptic 
Systems GmbH Germany www.sysy.com

T      

 

Tecan (order 
through Alpha 
Technologies) Ireland www.alphatech.ie

 

Trinity College 
Dublin, 
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Dept. Ireland www.tcd.ie/BioResources
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