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Abstract

In recent years there has been a rapid growth in the unddistpaf the basic
cellular processes of individual bacterial cells througtveamces in molecular
biological research. However, this has introduced a den@odderstand how the
interactions between the individual system componentsribore to the overall
population dynamics. A useful theoretical approach foatiefy information at the
individual cellular/molecular level with emergent popida characteristics is the
agent-based (or individual-based) modelling approacle. agent-based modelling
approach involves assigning pre-defined rules and parasniteeach individual
component (e.g. the bacterial cell) of the population. €hme, the emergent
behaviour of the population as a whole can be examined wittioai need for

population-level laws.

An agent-based model of bacterial population growth, dallee Micro-Gen
Bacterial Simulator, has been developed to provide a thieatdramework for
investigating the interactions between antibiotics andtdy#al cells in culture.
Parameters are inputted at the cellular level in order ttoate the life cycle of
bacteria grown in batch culture. The individual bacteria ablony are represented
by software agents, which store the physical traits sucmeyg state or antibiotic
damage and the behavioural rules of the bacteria. The atiena of antibiotic
molecules with the bacterial cells and extra-cellular eney (e.g.3-lactamases)

are governed by defined kinetic rules derived from the bicklditerature.



The Minimum Inhibitory Concentration (MIC) was calculatedm the model
for a number of common antibiotics, against methicillisistant S. aureus
(MRSA), and compared with real-world results. The predictalues from these
initial tests matched closely those recorded frionvitro experimental studies of
MRSA in the literature. The model was also used to examineysem dynamics
of the enzyme-catalysed therapeutic activation (ECTA}gmgg delivery system,
a novel approach for achievingtlactamase-mediated selective release of antimi-
crobial agents. It is thought that this strategy might bearpsing approach for
treating-lactamase over-expressing strains of bacteria that arstaat to tradi-
tional 5-lactam antibiotics. The model provides a suitable thewakframework
for comparing and contrasting different drug treatmerdtsgies from a system’s

perspective in order to assess their potential efficacy.
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GLOSSARY

(B-lactam Antibiotics

(f-lactamase

Staphylococcus aureus

Common class of antibiotics, characterised by
the presence of g-lactam ring structure which
facilitates binding to the penicillin-binding pro-
teins in cell membrane of bacteria and disrupting
cell wall synthesis. Examples include penicillin
G, ampicillin and cephalothin, 15

Enzyme produced by bacterial cells which de-
gradess-lactam antibiotic molecules by cleaving
their g-lactam ring structure., 31

Non-motile species of bacteria that generally ex-
ist as part of the normal flora found on nasal pas-
sages, skin and mucous membranes in humans.
Have the potential to cause a variety of infec-
tions from superficial skin lesions such as boils,
to more serious conditions such as pneumonia,

15

12



Agent-Based Model

Antibiotic Resistance

BAIT

Chemotaxis

Computational modelling approach which simu-
lates the actions and interactions of autonomous
individuals/agents. Rules and parameters are de-
fined at the individual-level rather than for the
population as a whole., 17

Refers to the ability of a microorganism to re-
sist the effects of an antibiotic. Examples of
mechanisms of antibiotic resistance include the
synthesis of antibiotic-degrading enzymes (e.g.
(G-lactamase), and modifications to drug targets
such as the penicillin-binding proteins (PBPSs) in

bacterial cell membranes, 33

Bacteria-Antibiotic Interaction Tool - precur-

sor to Micro-Gen, which implemented a simple
model of bacterial growth and interactions with
antibiotic molecules in discrete, 2D environment,

30

The movement/orientation of a cell/organism ei-
ther towards (positive) or away from (negative) a
chemical stimulus, along a chemical concentra-

tion gradient, 48

13



MIC

Micro-Gen Bacterial Simulator

Model

MRSA

Pro-drug

Minimum Inhibitory Concentration is the mini-
mum concentration of an antibiotic that results in
inhibition of bacterial growthn vitro for a spec-
ified period of time, 38

Agent-based model of bacteria-antibiotic interac-
tionsin vitro. Uses basic cellular and kinetic pa-
rameters to explore the emergent population dy-
namics of antibiotic resistance, 7

A mathematical or computational model is a pur-
poseful representation of an entity or system
whose purpose is to capture the essence of a
problem and explore different solutions of it, 20
Methicillin-ResistantS. aureus- multi-drug re-
sistant form ofS. aureusvhich was first isolated

in 1961. Resistance conferred by expression of
penicillin-binding protein 2a which has reduced

binding tos-lactam antibiotics, 32

A drug that is administered in a pharmacologi-
cally inactive (or significantly less active) form
and is then metaboliseih vivo into an active

metabolite., 111

14



CHAPTER 1

INTRODUCTION

1.1 Motivation

The emergence of multi-drug resistanceStaphylococcus aureumacteria has be-
come a major healthcare problem in recent years. Prior tmtredluction of antibi-
otics, patients witls. aureudbacteraemia had a mortality rate of over 80% [9]. This
situation improved dramatically when the firglactam antibiotic, penicillin, was
introduced into clinical use during the early 1940s [10]. wdwer, today greater
than 95% of allS. aureugsolates possess resistance to penicillin, and 40-60% of
clinical isolates in the United States of America and thetéthKingdom express
methicillin resistance (MRSA) [11, 12].

There has been a rapid increase in information about the balsillar processes
that lead to antibiotic resistance due to advances in cdlhaviecular biology. This
development has allowed a finer-grained approach to imadsig the spread of re-
sistance in populations of bacteria. However, the ovemiytation response to
antibiotic treatment is often a function of a diverse ran§énteracting compo-
nents. In order to develop strategies to minimize the spogadtibiotic resistance,

a sound theoretical understanding of the systems of irtterectaking place must
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be developed. For example, there has been a rapid developntle field of phar-
macokinetic/pharmacodynamic studies in the last few des#uht has led to a bet-
ter understanding of the complex dynamics that contributbe bacterial response
to drug treatment [13]

There are a number of different approaches that have been takanalyse
how populations of bacteria grow and interact. The most comapproach is to
develop mathematical, or state variable, models that destine population as a
whole. This can give important insights into parametershat gopulation-level
that influence the development of the colony [14]. These @gughres are appro-
priate for developing an integrated view of colony develeptnand benefit from
the fact that they are often less parameter-rich than otheroaches. However,
the use of global parameters requires the implicit assumgtiat the population
is in a homogeneous, mixed environment. However, in nahaeteria often form
highly heterogenous colonies where there can be signifioaalised variations in
the chemical environment such as ion concentrations, phjyéeature and nutrient
availability [15].

The approach taken here is to implement an agent-baseddigrdual-based)
model where the individual bacterial cells represent thl&mental units of the
simulation. This bottom-up approach means that paramaterslefined for the
bacterial cells rather than for the population as a whole fioperties of a colony
thus emerge from the set of interactions of a population ¢érogeneous bacte-
rial agents. Therefore, the inherent heterogeneity thiatein a bacterial colony
is explicitly modelled. Some of the drawbacks of this apploanclude the fact
that it can sometimes require more parameters than a stablsapproach since
the individual entities are explicitly modelled and it als@y become too open to

empirical knowledge [13]. However, by using appropriatgragation of parame-
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ters in order to simplify the model, and cognisant of its tetibns, the agent-based
approach can be used as a powerful tool for tracing backmeyisédaviour to that
of its individual components.

A model has been developed called Micro-Gen that implentaatagent-based
approach to simulate the life cycle of bacteria grown inungtand their interac-
tions with antibiotic molecules [16, 17, 18]. This model ¢aadapted to represent
different species and strains of bacteria using basic leelinformation. For this
study, simulations were carried out using parameters egdgk to MRSA. Micro-
Gen has been designed to incorporate the two main antibbegtistance strategies
characteristic of MRSA. It is possible to produce a quatitiéamodel of the inter-
actions between antibiotics and MRSA bacteria becauseitie¢idrules for these
reactions have been well characterized experimentallyJ@P The ability to sim-
ulate the individual molecular interactions of antibiatiolecules and bacteria, and
scale this up to large population sizes using the agentdggaroach, is a powerful
tool for exploring the emergent dynamics that contributartbiotic resistance in

bacterial populations.

1.2 Obijectives

The objective of the research is to develop an agent-basetklnoad MRSA
that incorporates the main antibiotic resistance mechani®und used by these
pathogenic bacteria. The model will be used to study thetsffef changes at the
molecular level on the overall efficacy of existing antilget

Our key objectives for attaining this goal were as follows:

1. Develop a robust, adaptable model of bacterial cellutawth in culture

which replicates the standard life cycle of bacteria. \atdthe model for
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the clinically important gram-positive bacterial spectesureus

2. Expand the model to include a detailed representatiohepirteractions be-
tween antibiotics and MRSA that incorporates the prindqiatic rules gov-

erning these interactions.

3. Use the model to examine the relationship between loetleellu-
lar/biochemical properties of individual bacteria/amdtits and high-level
treatment response at the population level. Assess thecingpahe differ-

ent kinetic parameters on antibiotic treatment outcome.

4. Explore potential, novel drug delivery systems such agpt-drug technol-

ogy and predict their efficacy using theoretical studies.

1.3 Outline of Thesis

The second chapter of the thesis gives an overview of egisjiproaches taken to
model bacterial growth and development, and compares tet-digqsed approach
to more traditional population-based mathematical mod&#iowing this, a more
detailed overview of MRSA will be given and the antibiotisigance strategies that
have been identified in it. The next chapter contains a @etalescription of the
agent-based model Micro-Gen, which was developed to stentha interactions of
anti-microbial drugs with bacteria in culture.

In chapters four and five, a detailed analysis of the systemamycs involved
in the interactions between anti-microbial drugs and MRSAarried out. The ef-
fects of key cellular parameters associated with antibimsistance mechanisms
on treatment outcome are also explored. The cellular andcutar parameters for

this model were derived from the biological literature forde different strains of
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MRSA, and the model was used to predict the Minimum InhilyitGoncentration
(MIC, which is a key clinical measure of antibiotic efficacf)each antibiotic ver-
sus the three strains. When the predicted MICs from the nvweled compared with
experimentally derived MICs for MRSA, they were found to belose quantitative
agreement.

Chapter six details simulations to explore a novel drugveeyi system called
the enzyme-catalysed therapeutic activation (ECTA) prgydlelivery system and
illustrate the value of Micro-Gen in supporting drug disegv efforts. The final
sections of the thesis include the conclusions from thegmtagsearch along with
future directions that may be taken, followed by a bibligrdna of relevant papers
in the field. Full copies of publications that have arisenafuthe current research

are attached at the end of the thesis.
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CHAPTER 2

LITERATURE REVIEW

2.1 Computational Modelling of Bacteria

Computational systems biology is a swiftly developing figldiological simula-
tion that attempts to model complex biological processestagrated systems of
interacting components, using data from genomic, proteométabolomic and cel-
lular studies [21]. This often involves collecting largaaksets of experimental data
to develop predictive computational models which are tresessed and compared
with newly derived experimental data in order to further roye the model and
give insights into the biological processes being observed

The power of the computational modelling approaches is aohsch in their
ability to make predictions (some degree of experimentitaton will always
be needed to confirm any predictions) but in their ability iseeghew insights into
the underlying mechanistic basis for the observed bioklgibenomena. A com-
putational model may be defined as a ‘purposeful representatf an entity or
system whose “purpose is to capture the essence of a probiemxplore differ-
ent solutions of it” [22]. The most important role of a modekherefore to aid in

our understanding of a particular process. From this petsge all the different

20



modelling approaches share the same principal aim, thdweghrhay differ in the
assumptions and tools that are used.

There have been many different modelling approaches deselm computa-
tional systems biology that encompass many different teai@md spatial scales.
Complex biological processes can range from microscofecgllular processes
such as cell metabolic pathways to large-scale ecologigestipns involving the
development of populations of organisms over long periddsye. For this rea-
son, many different modelling approaches, with differimgrgilarity in their tem-
poral/spatial scales, have been developed to approacé pineblems. However,
many of them are adaptations of particular modelling sffiatethat use common
techniques such as ordinary differential equations or algased modelling tech-

niques to address their specific modelling questions.

2.1.1 Mathematical Approaches

A number of the most common simulation techniques used dieclaathematical
approaches such as ordinary differential equations (OREd)partial differential
equations (PDEs). ODE models are probably the most commaieitimgy ap-
proach used in systems biology since they are computalyoeféicient and math-
ematically robust, and can be used to develop an integraedof biological sys-
tems. Basic ordinary differential equation methods aratdéichin their ability to
model situations such as discontinuous state-changesasticity, diffusion, com-
partmentalization and cell migration [23]. However, in erdo address some of
these limitations extensions to the basic ODE methods heea Heveloped such
as stochastic ODEs and compartmentalised ODE models. Bd3ks are lim-

ited to temporal modelling, but partial differential egoas (PDES) can be used to

21



model processes that have spatial as well temporal depeieden

Mathematical population models are commonly used to desdtie growth
and development of a bacterial colony as a unit, using glpbedmeters or state
variables [24, 14]. These “top-down” approaches have tharadge that they are
computationally efficient and less parameter-rich thanenhow-level approaches.
However, an important limitation of the state variable ajgah is that it does not
allow the user to trace back the system behaviour to the alvanf the individual
agents. For example, this approach cannot explain the iyntefactors that lead
to the population exhibiting a particular growth rate organg capacity [22]. How-
ever, they are important to provide an appropriate integratew of the population

behaviour.

2.1.2 Petri Nets

Other techniques used in computational systems biolodydedPetri nets, cellular
automata, and finally, the approach used in this projectagfemt-based approach.
Petri nets are an alternative approach to modelling tinpeddent processes [23].
Petri nets consist of two types of node: a ‘place’ which cauged to represent,
for example, a particular species of molecule, and a ‘tteomsinode, which might
represent reactions (Fig. 2.1). Petri nets are a discratersywhich is driven by
implicit time increments where a transition ‘fires’ when timarkings (or tokens)
at all of its ‘input’ places exceed the ‘weights’ on its infuts, producing product
on its output arcs. This correlates with a reaction occgrvitien there are enough
reactant molecules, resulting in the generation of reagiroducts.
The Petri nets approach has been expanded to address mopéexannd-

elling questions involving either discrete or continuoasues (Hybrid Petri nets
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P1

O\ T1

P2 Input
Py Arcs Output
Arcs P5
Token P3

Figure 2.1. An example of a simple Petri net, consisting pluinplaces (P1-P3),
output places (P4-P5), transition (T1), and arcs (inputartdut). Places can con-
tain tokens, and when there are enough tokens in the inpogpldne transition
‘fires’, removing tokens from its input places and addingihe the output places.
and Functional Hybrid Petri nets). Coloured Petri nets redge been developed
that allow mathematical relationships to be incorporatetransitions to govern
the rate of firing. Petri nets can also be used to build compartal models by
having different ‘places’ to represent the same chemicatigs in different com-
partments. For this reason, the Petri nets formalism reptesa powerful tool for
gualitative and quantitative modelling of many biologipabcesses [25]. However,

this approach is not as amenable to modelling spatially niggr@ processes such

as diffusion, growth or cell chemotaxis.

2.1.3 Cellular Automata

The Cellular Automata (CA) approach to modelling biologjggstems is a power-
ful tool for modelling both temporal and spatiotemporalgasses. In CA models

the environment of the models is represented by a discriteelgrid where the
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states of the components evolve synschronously in distnegesteps according to
a set of rules [23]. The CA simulation Conways Game of Life was of the first

computer applications in biology [26]. This model congisté randomly placed
cells on a square lattice and simulated birth, death andaictiens according to
pairwise interaction rules which used Boolean logic cands.

In basic CA models, the objects of the model do not strictlwendout rather
their properties or attributes are updated each time stegyiag movement to be
represented indirectly. A variation on this technique is ttynamic cellular au-
tomata (DCA) approach, which allows for the explicit modwejlof movement and
is conceptually similar to the agent-based modelling apgimd27]. Cellular au-
tomata approaches are particularly amenable to modeltoghastic spatial and
temporal processes such as transport processes, celtiongugiffusion or viral in-
fection. They can also be useful for visualising processehl as chemotaxis, drug
diffusion or pattern formation.

The robustness and adaptability of the cellular automateflinog approach has
made it amenable to simulating a wide range of biologicatess, from enzyme-
kinetics and hydrodynamics studies to the progression ¥fAIDS [28, 29]. Cel-
lular automata theory has also been used successfully taiexyattern formation

in bacterial colonies [30].

2.1.4 Agent-Based Approach

An alternative approach to modelling bacterial growth amdedopment is the
agent-based (or individual-based) modelling approach32]L The distinguishing
characteristic of the agent-based approach is that theerep of the individual

cells, rather than the colony as a whole, are modelled. Tdog6m-up” approach

24



allows a finer-grained analysis, connecting local chang#sescellular level to the
overall patterns of population growth. The agent-basedaguh shares some of the
strengths of the cellular automata modelling approachanit is able to explicitly
model both temporal and spatiotemporal processes. Faetmssn, itis particularly
amenable to modelling processes such as chemotaxis,idiffaad pattern forma-
tion in bacterial colonies. However, it represents an evaar fjrained approach in
that the individual biological entities being modelled aslicitly represented by
unique software objects.

It must be noted that the agent-based approach and higledm@athematical
approaches are not mutually exclusive but rather complegsah other in studies
of population dynamics. The latter approach allows a geércenaceptual frame-
work to be developed for a population which can lead to tlesoat the systems
level. The agent-based approach meanwhile allows impiofi¢atures of the indi-
viduals to be taken into account and related to the overatesy’s properties. The
agent-based approach can suffer from being more compuddiiifontensive and de-
pendent on empirical data than high-level mathematicalaggines such as ODEs
because each individual of a population is explicitly mésiel However, in cases
where the population being modelled expresses a high defheterogeneity, both
spatially and between individuals, the agent-based approgpresents a powerful
tool for exploring how this heterogeneity contributes te ffystem dynamics.

The next section contains an overview of existing agenedasodels that have
been used to explore bacterial population developmentowinig this, the Micro-
Gen Bacterial Simulator which was developed over the coofrigis Ph.D project

is introduced.
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2.2 Examples of Agent-Based Models of Bacteria

2.2.1 BacSim Model

One of the most significant examples of an agent-based (midchl-based) mod-
elling approach to modelling microbial colonies is the ‘Ban’ simulator [32]. It
is an individual-based model that uses the known physiolafgydividual cells
to produce a quantitative model of microbial colony devetept. When it was
introduced, it differed from previous models of microbialany growth which de-
pended on mathematical and cellular automaton approaglaglsitess this problem
[33, 24, 30].

BacSim had an advantage over the previous approaches it éxaticitly al-
lowed for spatial differences in the environment and betwide individual bacte-
rial cells. It demonstrated the power of this modelling t@ghe for exploring the
heterogeneous population dynamics occurring within a obied colony. For ex-
ample, it was used to explore the effects of growth asynghaod random variation
of cell parameters on population development [32].

BacSim was further developed into a two-dimensional mautstrate, multi-
species model of microbial biofilms [34]. Biofilms are mudpecies communities
of surface-attached micro-organisms characterised biydbkaetic diversity, struc-
tural heterogeneity and complex cellular interactionghdligh the model allowed
a continuous 3D space for bacterial movement, the extrardiie for bacterial
movement was restricted to about two cell diameters anduhstsate diffusion-
reaction was restricted to 2D space, so therefore it wagibesicas essentially a
2D model.

The model was compared to an established biomass-based (Bbd4) of

biofilm growth where the spreading of biomass was dictatedddylar automata
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rules [35]. Biomass-based models are spatially structpogdilation models where
the interactions of the biomass units lead to the emergeveelojgment of the
community. The comparison between the individual-baseddammass-based ap-
proaches showed qualitative agreement in terms of the lbgeoavth of the simu-
lated biofilms. However, it must be noted that the study dittake into account
the different phenotypic characteristics of cells in bio8lor the complex three-
dimensional structure of biofilms.

BacSim has continued to be developed since then and usedresadjuestions
such as the migration dbalmonella enteridign hen’s eggs, and the population
dynamics during the lag phase of bacterial growth [36, 37, B8wvas used as a
basis for studying cell division at the individual-levelander to understand better
the mechanistic principles underlying the lag phase. Tligéerent applications
of the agent-based modelling paradigm illustrate the paehis approach for
investigating many factors of microbial population deyetent and connecting

them with information obtained at the cellular level.

2.2.2 INDISIM Model

Another important model developed to investigate micriopegulation dynamics
using an agent-based approach is INDISM, which stands fiiviblual Discrete

Simulations [31]. INDISIM differs from BacSim in that whexe the latter treated
bacterial cells in continuous space (with discrete timé)ISIM is discrete in both

space and time. However, they both share in common the fatthby represent
bacterial colonies with respect to their individual cell®wing for spatial hetero-
geneity in the environment and individual variability beewn the different cells.

INDISIM has been used to study biomass distributions, gnoates and metabolic
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oscillations in simulated batch culture bacterial colerjil].

The environment of INDISIM is represented as a discrete\giid each lattice
point containing variables storing the concentrationsitbéigent types of particles,
for example nutrients, reaction products or residual petglur he diffusion of par-
ticles through the environment is calculated using a disz@é implementation of
Fick’s First Law of diffusion. Like BacSim, individual ruseare applied to the bac-
terial cells for motion, uptake, metabolism, reproducionl viability.

Simulations with INIDISIM have shown that it can be used tprogluce quali-
tatively the growth patterns @acillus subtilisbacteria on an agar plate [39]. It was
also used in studies of the lag phase, where it was demaedstitzit the evolution
of the mean mass and biomass distribution of a colony waseardeting factor for
entering the exponential phase of bacterial growth andateeaf enzyme synthesis
also had a direct effect on lag duration [40, 41].

Finally, an extended version of INDISIM, INDISIM-SOM hasdyeapplied in
studies of the dynamics of soil organic matter (SOM) and treugion of carbon
and nitrogen sources in the soil and their effect on mici@ptawth [42]. The agent-
based approach is particularly suitable for modelling arirenment such as soil
since it is a heterogeneous, discontinuous environmehtdiscrete microhabitats

where the chemical and biological properties vary greatBr emall distances.

2.2.3 Other Agent-Based Bacterial Models

A number of different agent-based simulators were develapéhe lab of R. Paton
to approach the problem of modelling bacterial cells. Thesee built on previous
work using the agent-based approach to model ecologictmsgsnvolving learn-

ing herbivore animals in a world populated by plants [43].eT®WOSMIC system
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was an agent-based model of evolution in bacterial cellslumg four levels of
interaction in the system (Environment- Individual Celiaene Products - Genes)
[44, 45]. The BacSim model, described above, was used faesepting cell
growth and division. COSMIC introduced an extra level of gbaxity by incor-
porating a genetic component into the bacterial cells, goatallel implementation
was created to take advantage of parallel computing ressurc

COSMIC incorporated a gene transcription network that oiigal a ‘flagella
activation protein’ which was a generic gene product resfim@ for bacterial
movement. This gene product triggered motility and chemisteowards areas
of higher nutrient concentration, creating a positive fesak loop for the gene
transcription network. The goal of COSMIC was to evolve aayea that max-
imised cell growth as a result of this feedback loop. AlthHoWOSMIC repre-
sented a somewhat limited implementation of a genetic compi it demonstrated
the strength of the agent-based modelling approach fosiigaging questions such
as the evolution of bacterial agents over time to produdergifit phenotypes that
affect cell survival.

A simpler model of bacterial growth, which did not includeeng component,
was also developed in the same laboratory, called RUBAM.[4Bhe bacterial
agents incorporated a Learning Classifier System (LCS)doasduzzy logic for
implementing chemotaxis. The LCS was the decision makingpmment of a feed-
back loop that included the environment, sensors to debecehvironment and
directed swimming of the bacterial cell. This resulted ia #volution of survival
strategies from an initial pool of bacterial agents inii@tl with random rules. With
this approach it took a long time to find good solutions, batlihcteria would even-
tually evolve to a point where they could adapt to prevaitogditions and respond

to environmental stimuli.
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The most recent project from the lab of R. Paton, COSMIC-Ru¢tempts to
combine the experiences from COSMIC and RUBAM to developgentbased
model consisting of three levels: the genome, bacterisl @etl environment [43].
Each individual bacterium has a unique location, size gstétcell division and
genome. The model expands on the genetic component of thi@ariCOSMIC
model to incorporate representations of plasmids and bapteges which add to
the complexity of the population dynamics. This means tloaizbntal transfer of
genetic information within a population can occur as welvegical transmission
between generations.

The agent-based modelling approach has also been appligti&ystand the
mechanisms that affect microcolony and biofilm formatiobaeteria by L.R. John-
son in the University of California [46]. A model was devedajthere to infer how
the patterns observed in the early stages of biofilm formatre affected by the be-
haviour of the individual bacterial cells. The formationgpbups was modelled as a
function of the doubling rates, stopping rates and the gtreof the interactions be-
tween the cells. This could be used to make predictions dimwthe inter-cellular

interactions affect the mean colony size and maximum cosizey for example.

2.2.4 BAIT & Micro-Gen Bacterial Simulator

The ‘Micro-Gen Bacterial Simulator’ was developed to motted growth and in-
teractions of bacterial cells with antibiotigsvitro using the agent-based approach
[17, 18]. It was built on existing work in the laboratory toveééop an agent-based
model of bacterial growth in culture called the BacteriatiBiotic Interaction Tool
(BAIT) [16]. BAIT incorporated a simple model of bacteriatogvth and inter-

actions with antibiotic molecules in a discrete two-dimenal grid environment
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using the Java programming language. Mathieu Joubert, ra®ipan internship

project in the laboratory, developed a C++ version of BAITiethformed the ba-

sis for the Micro-Gen project. Micro-Gen represents a $igamt expansion and
re-design of the original BAIT tool, in order to build a moesalistic representation
of bacterial growth and development in culture and theiekminteractions with

antibiotics.

The theory of autonomous agents is a useful approach for theeling of
bacterial cell colonies as it allows large-scale poputatimdels to be derived from
simple rules dictating the growth and interactions of thdividual bacterial cells
of the population. The Micro-Gen Bacterial Simulator ugg@srimation about the
cell biology of bacteria to produce global information abpapulation growth in
different environmental conditions.

An agent-based approach was chosen over a simpler mass axigtel in or-
der to explicitly model the heterogeneity in environmeitahditions, for example
between the interior and exterior of the colony, and betwadividual bacterial
cells. In complex microbial communities, such as biofilnisere can be highly
heterogeneous localised niches where the chemistry \@na@satically over small
distances.

A key component of the model is the ability to quantitativelpdel antibiotic
molecules and their interactions with the bacterial cdllsese interactions are gov-
erned by defined kinetic parameters specific to the type dabiatit and bacterial
strain being modelled. This allows a quantitative model mtflaotic interactions
with bacteria to be built up and their pharmacokinetic praps to be investigated.

The model also incorporates two important antibiotic tasise mechanisms
employed by bacterial cells against antimicrobial agemiskform the cornerstone

of the antibiotic arsenal: special enzymes released bghbactalled3-lactamases,
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which degrade the antibiotic molecules, and reduced bgndifinities between the
antibiotics and receptors in the bacterial cells. Thesmiatic resistance mecha-
nisms are of great clinical concern as their developmentsgnead across many
species of bacteria has led to the erosion of the efficacy ofyraammonly pre-
scribed antibiotics, in particular penicillin and its dexiives. Moreover, the pro-
duction of thesgj-lactamases persists in multidrug resistant strains, e be

resistant to more than ten different antibiotics.

2.3 Methicillin-Resistant Staphylococcus aureus

2.3.1 Overview

The emergence of multi-drug resistancesiimphylococcus aureumacteria has be-
come a major healthcare problem in recent years. Prior tmtredluction of antibi-
otics, patients witls. aureudacteraemia had a mortality rate of over 80% [9]. This
situation improved dramatically when the firglactam antibiotic, penicillin, was
introduced into clinical use during the early 1940s [10].wdwer, the widespread
therapeutic use of penicillin resulted in selection foasts ofS. aureuscarrying
antibiotic resistance mechanisms [47]. By 1950, peniciiisistance was recorded
in over 50% of all staphylococcal isolates [48]. Today gee#ttan 95% of alE. au-
reusisolates possess resistance to penicillin, and 40-60%rotal isolates in the
United States of America and the United Kingdom express itiéih resistance
[11, 12].

Members of theStaphylococcus aurespecies are gram-positive bacteria with
spherical-shaped cells (cocci) approximately 0.xrilin diameter [49]. They di-

vide in three planes, with a generation time of approxinyaBl minutes, result-
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ing in three-dimensional, cuboidal packets of cells [4%heY¥ are non-motile and
generally exist as part of the normal flora found on nasalggess skin and mu-
cous membranes in humans. Howe&raureusstrains have the potential to cause
a variety of infections from superficial skin lesions suchbadls, to more seri-
ous conditions such as pneumon$. aureuss also a major cause of nosocomial

(hospital-acquired) and community-acquired infectids(, 51].

2.3.2 Antibiotic Resistance Mechanisms

Antibiotic resistance refers to the ability of a microorgamn to resist the effects of
an antibiotic. The development and spread of antibioticstasce in pathogenic
bacteria is affected by a complex range of interacting factd he appearance of
resistant strains of bacteria is thought to be an anciertigenary event, however
the fitness cost associated with resistance mechanismsysgvlimited their pro-
liferation [52]. In recent years, the widespread use oftaatics has resulted in a
significant positive selective pressure for resistantrsgrgarticularly in the clinical
setting [11].

There are several responses that have been observed indactesponse to
selective pressure by the widespread useg-tdctam antibiotics. These include
the deletion of porin proteins in gram-negative bacteribltck the passage of an-
tibiotic molecules through the bacterium’s outer membyamel also the activation
of efflux exporter proteins [53, 54]. However, perhaps thesmmportant resis-
tance mechanisms in gram-positive pathogens suc®. asreusbacteria are the
expression of enzymes callgdlactamases, and alterations to the molecular targets
(Penicillin-Binding Proteins) of the antibiotics (see F2).

The mediator of penicillin resistance . aureusis a -lactamase enzyme
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Figure 2.2: Schematic representation of main antibiotgistance strategies in
MRSA bacteria.A. Expression of alternate form of PBP2, called PBP2a, with re-
duced binding affinity for antibioticB. Production of-lactamase enzyme which
cleaves antibiotic molecules.
which hydrolytically cleaves thg-lactam ring present in penicillin and othgr
lactam antibiotics (Fig. 2.3)3-lactamase was first discoveredtscherichia coli
bacteria in 1940, and-lactamase-expressii®) aureusacteria were isolated soon
afterwards [55, 56, 47]. The appearanceédactamases is thought to be an ancient
evolutionary event. However their broadened distributi@noss many bacterial
species, under selective pressure from antibiotic usagdydcome a serious health
concern [54].

Four variants ofS. aureuss-lactamase have been identified by immunologic

methods (types A-D) [19]. The most well studigdactamase is the class A

lactamase characteristic 8f aureusstrain PC1 [58]. This is encoded by the blaz
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Figure 2.3: Examples of the chemical structures of threensoms-lactam an-
tibiotics: A. Penicillin G.B. Ampicillin. C. Cephalothin. They are characterised
by the presence of @-lactam ring structure (square at the centre of each strictu
above). Chemical structures were derived from the on-linggBank cheminfor-
matics database [57].

gene which is carried on a transposable element of a largenpda Expression of
(-lactamase is regulated by the interaction betweédactams in the environment
and a cell surface signal-transducer protein BlaR1 [48, B&Er induction of ex-
pression, most of thg-lactamase enzyme is secreted into the extracellularumilie

while some remains bound to the cytoplasmic membrane ofah{0]. When the

antibiotic concentration in the environment decreasesgpeession ofi-lactamase
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expression occurs because BlaR1 is no longer auto-adtij@i$¢ A study by Nor-

ris et al. (1994) found that among 56@-lactamase-producing MRSA isolates taken
from nine locations across the U.S.A., 80% expressed typea@ctamase and the
remainder expressed type C. Type B and type-[actamases are thought to be less
common among MRSA strains [1].

Despite fifty years of selective pressure from continued afsg-lactam an-
tibiotics, S. aureushas not acquired any new or modifigdlactamases [48]. This
differs considerably from other species, sucltasherichia colwhere over a hun-
dred TEM -lactamase variants have arisen from the ancestral TEMag& {2].
However, somes. aureusstrains have developed another mechanism that confers
resistance t@-lactam drugs, including methicillin. This is based on itens to
the penicillin-binding proteins, which are the main molecuargets ofg-lactam
antibiotics in bacteria.

The introduction of methicillin in 1959 to treat infectiongpenicillin-resistant
Staphylococcus aureussulted in the selection of MRSA strains [48]. As early
as 1961, MRSA strains were isolated and there has been & steaelase in inci-
dences since then [63]. Norm&l aureuscells produce four types of membrane-
bound transpeptidase proteins called penicillin-bingirgeins (PBPs 1-4), which
assemble and regulate the final stages of cell wall biosgigh&@he mode of ac-
tion of the 5-lactam antibiotics involves the acylation of a catalygsidue in the
transpeptidase active site of PBPs which results in thditiin of the correspond-
ing catalytic activity (cell-wall cross-linking). HoweyeMRSA bacteria contain a
gene callednecA which encodes an extra penicillin-binding protein, PBP2a

The mecAgene is located on the staphylococcal cassette chromosuene
(SCameg, which is a mobile genetic element capable of transfercabss dif-

ferent bacterial species [64]. At present, there are fiverkntypes of SC@ec
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(types | - V) distinguished by their genetic composition amk [65]. It is not
known at what frequency SG@kcis acquired in nature, however Robinson & En-
right estimated that methicillin resistanceSn aureusnay have been acquired on
over 20 separate occasions during evolutionary histoyy % GnecType 1V the
most frequently acquired [66]. S@@&cType IV has been associated with a recent
increase in community-acquired MRSA. This may be due torsalier size and
lower fitness cost compared to the S@€xtypes I-Ill [67].

The product of thenecAgene, PBP2a, does not bind thkdactam moiety read-
ily because the approach to the active site is stericallyemered. When an MRSA
organism is subjected to-lactam stress, PBP2a confers resistance by supplement-
ing its transpeptidase activity (cell-wall cross-link)rig the transglycosylase func-

tion of native PBPs during cell wall synthesis [48].

2.3.3 Pharmacokinetics and Pharmacodynamics

The term pharmacokinetics refers to the absorption, digion and decay of drugs
in patients, which determines the time course of drug canagons in serum [68].
The complementary field of pharmacodynamics, in the comkantibiotic thera-
pies, deals with investigating the functional relatiopshétween the concentration
of drug and the rate of growth/death of the bacteria in its@nee [69]. The most
common pharmacodynamic parameter used in the clinicahgédits traditionally
been the minimum inhibitory concentration (MIC) of a drudni'is the concentra-
tion of antibiotic that ensures a net rate of bacterial ghosgual to zero. However,
this parameter on its own does not give insights into the tiowse of antimicrobial
activity, or persistent effects of the drugs such as the-posbiotic effect (PAE),

which is the length of time that bacterial growth continugb¢ inhibited after re-
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moval of the antibiotic [68]. For this reason, in recent dxsathere has been exten-
sive research into developing detailed pharmacokindtarpacodynamic models
that can be used to optimize treatment regimens of antimi@ardrugs and aid in
rational drug design strategies.

The pharmacodynamics of antibiotics are usually stuthedtro by develop-
ing time-kill curves of exponentially growing bacteria e@ged to different concen-
trations of antibiotics [69]. Pharmacodynamic functioms a means of formally
describing the relationship between bacterial growthidead the antibiotic con-
centration. This functional description can range from sy\@mple form, like
the MIC, to more complex mathematical models such as thea@®yH,,,. mod-
els which quantitatively describe the net growth rate of ltheterial colony as a
function of the antibiotic concentration [69].

The sigmoidE,, .. model is a highly flexible, non-linear model which is used to
capture many concentration-effect relationships. It¢akéo account a minimum
threshold drug concentration below which little or no efisobserved, a log-linear
drug concentration versus effect intensity relationshipd a plateau at relatively
high drug concentrations [70]. Simpler models of the cotregion-effect relation-
ship, such as linear or log-linear models, have been used dae are available
over a limited effect intensity range [71]. However, tBg,, model is more com-
monly used because it can take into account the levelinguaj dffect at higher
drug concentrations and appears to be more physiologieéyant [70].

Mechanism-based mathematical pharmacokinetic-pharmyaeonic (PK-PD)
models generally incorporate equations or sub-modelgithesg microbial growth,
the effects of the antimicrobial drugs, and the changingydroncentrations. A
recent review by Czock & Keller (2007) showed that most mi#d mathematical

mechanism-based PK-PD models can be derived from a commdelrmnbanti-
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microbial drug effects based on cell growth and cell killprgcesses [72]. In this
common model, two pharmacodynamic functions are incotpdnahich determine
the replication and death rates of the bacterial colonyaetsgely in relation to the
drug concentration. The relationship between the rate @@l growth inhibition
and the drug concentration is described using a siggid model. The second
pharmacodynamic equation, which relates the increaseiratie of bacterial death
to drug concentration, is also based on a signtfid, model. This commonality
among the apparently different models allowed their pataraeo be related to the
MIC and to a common set of PK-PD indices [72].

Even the most inclusive pharmacodynamics functions assugiebal (popu-
lation based) killing function that changes according te thanges in antibiotic
concentration. However, the approach followed in the cunweork documented in
this thesis involves the explicit incorporation of the Kios of the interaction be-
tween antibiotics and the macromolecules involved in taste and derives from
it those concentrations of antibiotic that lead to inhiitiof bacterial growth. This
approach is complementary to the pharmacokinetic-phaydyaamic modelling
approach generally used to assess and model drug efficaagptibaches the un-
derstanding of drug function and efficacy from the perspeabif the underlying
biochemical mechanisms that lead to the observed outcotig, ifi conjunction
with PK-PD studies, would allow a computational framewoflanalysis for relat-

ing molecular/biochemical data with more high level phatolagical studies.
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CHAPTER 3

MODEL DESCRIPTION

3.1 Overview

The Micro-Gen Bacterial Simulator is an extended and matlifiersion of an
agent-based Java software tool called BAIT (Bacteriadfiatic Interaction Tool)
[16]. Micro-Gen is coded in the C++ object oriented prograngranguage. The
individual microorganisms are represented by softwaratsgehich store physical
traits of the bacterial cells as well as behavioural rules®eisted with them. The
modular nature of the program means that functionalitres#cteristics specific to
particular bacterial species can be readily incorporattxthe basic cellular model.
This research describes work carried out to simulate thibiatit resistance mech-
anisms specific to MRSA bacteria. However, to illustrateddygacity of Micro-Gen
to simulate various bacterial populations, some test tesuhulatingescherichia

coli are also included to demonstrate the effect of motility octéxa@al behaviour.

3.1.1 Environment

The culture environment is represented by a discrete, twe1aksional grid contain-

ing diffusible elements such as nutrients (glucose), esyand antibiotics. Each
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discrete grid position (called a “patch”) in the environmeaontains variables to
record the levels of nutrients, antibiotics and bacterayenes in it. It also in-
cludes pointers to bacterial agents that currently occhpypatch. The movement
of molecules in the environment is assumed to occur acogrdirthe process of
random diffusion down local concentration gradients. ActBtized implementa-
tion of Fick’s first law of diffusion is used to calculate thewement of molecules
between adjacent patches [31]. According to the diffusigorithm, the amount
of substance exchanged between two adjacent patches isrfioopl to the con-
centration differenceZAMol) multiplied by a user-defined diffusion coefficiet,
(Fig. 3.1A). The diffusion coefficient determines the prdjmm of molecules that
are exchanged between two patches during each time step pdbehes are diag-
onally adjacent to one another a diffusion rate modifiey/@)/is applied.

There is also another higher-level diffusion rate modifidiake into account the
relative differences in the molecular mas4,§ of the various molecules (glucose,
antibiotics,3-lactamases). The rate modifier of glucose is 1.0, i.e. tbe-dsfined
diffusion co-efficientD directly determines the rate of diffusion of glucose. The
rates of diffusion of the other molecules are expressedivelt glucose. Glucose
was chosen as the benchmark since it is the smallest mol#aatles simulated
in the model. The diffusion rate modifiers for the other males are calculated
by dividing theM,. of glucose by theM, of the diffusing molecule. The rate of
diffusion is not influenced by the density of bacterial céllshe current patch, but
this will be included in future work to develop a more detdil@odel of particle

diffusion within a colony.
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Figure 3.1:A. Diffusion algorthim applied to molecule® = diffusion coefficient,
AMol = concentration differenceB. Overcrowding algorithm applied to bacterial
cells. p(x;) = probability of bacterial agent moving to patch[bio]; = bacterial
biomass in patch
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3.2 Principal Model Entities

3.2.1 Bacterial Agents

The bacterial agents have a number of parameters assowidiethem along with
a set of behavioural rules that dictate how they interadt wie environment. The
agents are an abstract representation of bacterial calstiné internal subcellular
processes not explicitly modelled. This is done in order toimize the number
of parameters associated with each agent, because of tiappeithat each new
parameter makes it more difficult to understand what a mookes §{L3]. The agent-
based approach can result in more parameter-rich modeisatita mathematical
state variable modelling, but this problem can be alledatmewhat by the aggre-
gation of details into a single parameter. However, it is@leinge to determine the
appropriate level of aggregation since there is often aetttibetween ‘realism’
and keeping the model as simple as possible. The main inpatnggders for the
bacterial agents are listed in Table 3.1.

The bacterial software agents are stored in a “fabric” grdata structure
which is initialized with a pool of bacterial agents at tharsof the simulation.
Bacterial agents in the fabric only become active in the &atmn when they are
flagged as “alive”. When reproduction occurs and a new dangigent is added
to the environment, one of the non-active agents in the dabrswitched to ac-
tive status and its variables updated. The pre-initidbzadf a pool of non-active
agents in a fabric at the start of the simulation means thatsodtware objects do
not have to be created or destroyed in memory every time &tact is born or
dies. This results in significant performance gains whefintavith large popula-
tions of agents. Furthermore, algorithms are used to ninittia bacterial fabric in

a non-fragmented state with active agents stored in comtigjplocks of memory.
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This is done to minimize the memory access times which otiseraould lead to a

significant performance bottleneck when running large nensibf agents.

Table 3.1: Input Parameters for Bacterial Agents in MicreaGnodel. Sample
values forS. aureuspecies included. b.u. = biomass units

Input Parameter Input Value
Biomass threshold for division 10000
Nutrient Intake (b.u. loop') 10.0
Survival cost (b.u. loop') 0.2
Stationary phase relative metabolic rate 0.2

Lag phase length (min) 66
B-lactamase production rateil s—!) 3.28x107
(G-lactamase production cost (b.u.) 0.1
Antibiotic Intake (/M) 6.0x10°8

Kinetic Parameters kK., K..;, Kys), | see Table 3.2

3.2.1.1 Growth Parameters

The biomass of the cell is tracked within the simulation bingsimulation units

called “biomass units”. Bacterial agents increase the@imzass by absorbing nutri-
ent from the immediate environment. The rate of nutrienbgitson is determined
by the “nutrient intake” parameter specified by the user.ré&he also a “survival

cost” associated with normal metabolic activities of thi aed this is subtracted
from the cell biomass each time step. As the agent accunsulateient, its biomass
increases until it reaches a certain threshold (“biomasshtold for division”) when

reproduction is triggered. Bacterial cells reproduce aakx by the process of bi-
nary fission, whereby a cell divides into two identical daegf cells approximately
half the size of the original cell.

The nutrient intake rate and biomass threshold for divisiene determined
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by fitting to an experimentally determined bacterial doogpltime of 29 minutes,
which is the estimated generation timefaureustrain BB255 [73]. The survival
cost parameter influences the length of the stationary pbiades growth cycle.
A higher survival cost results in a shorter stationary phHassause cells enter the
death phase more quickly. A survival cost of 2% of the rate wifiant intake
was chosen for the test simulations recorded here. Thigsepts a level which
does not limit the exponential phase of bacterial growtke Skapter 4). However,
in nature this would vary considerably between differendias and for a more
detailed quantitative representation of the growth curfva particular strain this
would need to be estimated from experimental studies.

Some other parameters associated with the bacterial agentke “stationary
phase relative metabolic rate” and the “lag phase lengthg first parameter refers
to a state of reduced metabolic activity that bacterialkogtiter when they are sub-
jected to severe stress such as nutrient deprivation. Tureitsl cost” parameter
is multiplied by the proportion specified. The principalesff of this parameter is
to modify the length of the stationary phase (see Chaptelt 4¢presents the bac-
terium’s ability to preserve itself in hostile, nutriengrived conditions by shutting
down non-essential metabolic activities. A sample valu@.@fis used in our test
simulations for illustrative purposes, however as with ‘thervival cost” parame-
ter, this would need to be experimentally estimated in ordgive a quantitatively
accurate representation of the length of the stationargehdt is not a signifi-
cant factor in the simulations for predicting the Minimunhilitory Concentration
(MIC) of an antibiotic (Chapter 5) since the drug is addedrlythe exponential
phase of growth prior to the bacteria entering the statppphase.

The “lag phase length” parameter specifies the length of tintekes for the

bacteria to adapt to their new environment at the start o$ithelation. During this
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phase, bacterial cells synthesise the required cellulapoments to adapt to their
conditions. Their rate of nutrient intake increases fromratial low level until
the maximum intake rate is achieved. This represents thenadation of proteins
required to process the nutrients available in the bactésinew environment. The
underlying dynamics that determine the length of the lagsphae not explicitly
modelled, however there is a random element introducedeédfati that the bacteria
are initialized with different energy states at the starth@f simulation. Pratst
al. (2008) describe a more detailed model of the underlying [aian dynamics

occurring within the lag phase using an agent-based appfda¢

3.2.1.2 Antibiotic Resistance Mechanisms

If the bacteria are exposed to antibiotics, this triggeessynthesis and release of an
enzyme calleg-lactamase into the extracellular milieu (Fig. 3.2). Thiactamase
enzyme is an important defensive protein that bacteridd sekcrete to destroy any
(S-lactam antibiotics (e.g penicillin) in their vicinity. Ehrate of3-lactamase pro-
duction and the extra metabolic cost associated with it easplecified by the user.
For our simulations, thg-lactamase production rate was estimated by varying it
over a range of values and calculating the minimum inhigitencentration (MIC)
of penicillin G at each value (using kinetic parameters fenipillin G described
below). Theg-lactamase production rate was chosen as that which rdsulte
simulated MIC equal to the experimentally determined MI€denicillin G versus
the particular bacterial strain being modelled.

For the test simulations, Type A and Type/clactamase-producing MRSA
strains were modelled and calibrated with the experimergallts of Nor-
ris et al. (1993) for penicillin G (Type A MIC = 72.Lg/ml; Type C =

47.9ug/ml) [1]. Based on this, thej-lactamase production rates were es-
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Figure 3.2: Schematic representation of releasg-té#ctamase enzymes fro8.
aureuscell. Production ofs-lactamase is induced by binding gflactam antibi-
otics to a cell surface signal transducer protein (BlaR1pstf thes-lactamase
enzyme is secreted into the extracellular milieu while seemeains bound to the
cytoplasmic membrane of the cell.

timated to be 3.28x 10 uMs !agent! for the type A simulated strain and
1.62x107 uM s~ ! agent! for the type C simulated strain.

There are a number of parameters listed in Table 1 dealirigtingt interactions
between the bacterial agent and antibiotic molecules. Mtibiatic intake parame-
ter determines the rate at which free antibiotic is depleteéle patch by absorption
across the cell wall of the bacteria. There are two kinetrapetersk,, K,;) which
determine the rate at which the antibiotic molecules bingemwicillin-binding pro-
teins (PBPs) in the cytoplasmic membrane, underneath theale There are also
two kinetic parameter(,;, K,,) that describe the interactions between antibiotic

molecules ang-lactamase enzymes in the environment. Values for thessi&in

parameters were taken directly from experimental litesafand are explained in
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the sections on antibiotics antdlactamases below.

3.2.1.3 Movement and Chemotaxis

The bacterial agents in Micro-Gen, for motile bacteria, raplement a “run and
tumble” mode of movement characteristic of species witheflag such ass-
cherichia coli[74]. They move forward smoothly during the “run” phases and
reorient to a random direction during the alternating “tlefilphases (Fig. 3.3).
They also display positive chemotaxis when exposed toenttdoncentration gra-
dients. This is facilitated by a temporal sensing systemralhethe bacteria peri-
odically compare nutrient concentrations as they move fpaich to patch through
the environment [75]. When a bacterium encounters a peditidrient gradient it
lengthens the time of its “run” phase, and the relative domadf runs and tumbles
determines if the cell moves towards or away from a chemioarenment.

The impact of positive chemotaxis by the bacterial agentiserpresence of nu-
trient gradients is illustrated in Figure 3.4. The bactpoasess a temporal sensing
system to detect nutrient gradients and move towards afdagher nutrient con-
centration. In Figure 3.4, two localised areas with highgtriant concentrations
were created in the upper-left and lower-right corners eféhvironment. As the
nutrient diffuses into the rest of the environment it progkia gradient and the bac-
teria respond by moving up this gradient. In Figure 3.4Ddte&t the 2 hour time
point), the bacterial cells, marked in yellow, can be seestered around the areas

of high nutrient concentration, represented by lightedsisaof grey.

3.2.1.4 Overcrowding Algorithm

In the case 08. aureudacteria, which are non-motile, an overcrowding algorithm

is applied to take into account the physical size conssanfita single patch in
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Figure 3.3: Diagram of “run and tumble” mode of movement ekgeristic of bac-
teria with flagella (e.g.E. coli). During the run phase, bacteria swim forward by
active propulsion from the flagellum. This is punctuatedoybles, where the cell
randomly reorients to a new direction. Decreased frequehtiymbles in response
to a chemical attractant gradient (e.g. nutrient) resualtsigration of the cell up
the gradient in an analogous way to a biased random walk (ctzeds).

the environment. The area of each patch is configured tosept@pproximately

1 m? of medium. Depending on the size of the bacterial speciaglsmulated,
overcrowding will come into effect when more bacteria ogcthe patch than can
be accommodated. For example, the estimated cell diamietenewly dividedS.
aureuscell is 0.5um [49]. Therefore, when more than four such cells occupy a
single patch an overcrowding algorithm is applied (Fig.B3.1According to this,
the probability,p(x;), of a bacterial cell in an overcrowded patch being moved to
an adjacent patchis inversely proportional to the relative bacterial biosasthe
adjacent patch. The direction a cell is moved is determinesampling from the
resultant probability distribution of the surrounding ¢ias.

A ‘bacOvercrowdinput parameter may be specified by the user to control the

rate of spreading of the bacterial colony across the sudatiee environment. If
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A. (Time=2min) B. (Time = 33min)

X Mg(r0)-L:1006-Lps: 24.35 Win1 BEX]
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C. (Time=1hour) D. (Time =2 hours)
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Figure 3.4: Screenshots from Micro-Gen illustrating pesithemotaxis of motile
bacterial agents towards areas of higher nutrient coraigonr (A) Bacteria (yel-
low) initially randomly distributed, with localised areaghigh nutrient concentra-
tion initialised in upper-left and lower-right corners detenvironment.g - D) As
nutrient diffuses into the environment, the bacteria ddteznutrient concentration
gradient and move towards areas of higher nutrient coratortc Nutrient lev-
els in environment are represented by colour-coded graflighter shade = higher
conc.) with blue, green and red colours representing higialiom and low nutrient
concentrations, respectively.
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the bacterial biomass in the current patch is greater bla@®vercrowdnultiplied
by the lowest bacterial biomass in an adjacent patch thepettierial overcrowding
algorithm is applied. For example, withbemcOvercrowdvalue of 1.0 there must
be at least one adjacent patch with a bacterial biomassHassar equal to the
current patch for there to be a chance of a bacterial celgomioved. On the other
hand with a value of 2.0, the bacterial biomass must be twieddvel of all the
surrounding patches. A higher value results in more dersstied cells and less
radial expansion of the colony (Fig. 3.5).

ThebacOvercrowdbarameter may be thought of as a crude “aggregation” con-
straint. However, a more sophisticated model of cell agafieg would need to
be implemented to recreate the complex cell assemblagesl fdor example, in
biofilm communities. However, the bacterial overcrowdimgoaithm suffices to
represent the gradual spreading of non-md@il@ureusells across the surface of
an agar plate. The parameter is used to ensure that movefeatterial cells is
always down a bacterial biomass concentration grads@vercrowd- 1.0). In-
creasing thdacOvercrowdnput value affects the transition from the exponential to
the stationary phases of the bacterial population growthec{Fig. 3.6). For the test
simulations documented in this reporhacOvercrowdralue of 1.3 was used. This
represents a relatively unconstrained expansion of thengaldown the bacterial

biomass concentration gradient), i.e. only minimal cefjragation is assumed.

3.2.2 Antibhiotics

The quantities of antibiotics in the environment are st@gudariables in each patch
and subject to diffusion as described above. Each moleaseahdistinct half-

life derived from the biological literature which deterrasits rate of degradation
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Figure 3.5: Effect of ‘bacOvercrowd’ parameter on the rhdipansion of bac-
terial colonies. Four different simulations were carriag with different input
values for bacOvercrowdA. bacOvercrowd =1.0B. bacOvercrowd = 1.3C. ba-
cOvercrowd =1.6D. bacOvercrowd =2.0. Higher values of bacOvercrowd result
in more aggregation of bacterial cells and less radial esipan Images were pro-
duced using the open-source ‘Animp’ 3D visualisation safevdeveloped by Ray
Seyfarth, University of Southern Mississippi, USA).
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Figure 3.6: Log growth curves of simulated MRSA bacteria¢ratg grown under
in vitro culture conditions with different ‘bacOvercrowd’ inputraaneter values
(1.0-2.0) Initial inoculum = 64 bacterial agents.

over time (Table 5.3) [57]. If there are bacterial agentshe patch they will
absorb antibiotic according to their specified rate of ietakhe ability of3-lactam
antibiotics to inhibit bacterial cell division is based dretfact that they bind to
proteins in the cell membrane called penicillin-bindingteins (PBP) which are
necessary for cell division (Fig. 3.7). Upon binding to PBP &ntibiotic inactivates
it and if a significant proportion of PBPs in the cell are imzatied the bacteria will
be unable to reproduce and cell death may occur [49].

The interactions between thiklactam antibiotic molecules and PBP2a are ex-
plicitly represented in the simulation. However, the iatgions with the other PBPs
present in the bacterial cell membrane (PBPs 1-4) are ndicgkpmodelled for
the MRSA bacterial agents. This is sufficient for represenMRSA because the

limiting reaction for antibiotic efficacy is that with PBP2a&hich has a binding
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Figure 3.7: Schematic representation ®factam antibiotic (e.g. penicillin or
cephalothin) binding to penicillin-binding protein (PBiR)cell membrane of bacte-
rial cell. PBP is required for normal cell wall synthesis tor during cell division.
However, binding and acylation of the PBP by antibiotic tesin inhibition of this
function.

affinity for g-lactams that is reduced compared to the other PBPs. Thixesd
the level of complexity caused by introducing more emplrpgarameters into the
model.

There is an internal counter associated with each bactegemt which repre-
sents the proportion of PBP2a molecules that have beentadylar bound) by
antibiotics. When this value reaches 100%, then death dfdbterial agent occurs.
Reproduction will only occur successfully when the peragetof bound PBP2a in
the bacterial agent is10%. When the percentage of bound PBP2a is between 10%
and 100%, cell division is assumed to be disrupted until mbtornover of protein
in the cell reduces this percentage below the thresholdhadéie threshold values
are maintained constant across all the simulations docteddrere in order to be
able to compare the relative efficacies of the antibioticEresg a single hypotheti-

cal MRSA strain. In nature, however, the relative valueghiese thresholds might
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vary considerably between different strains [76].

In order to quantify the efficacy of the antibiotic at inhibg cell division, ki-
netic parameters describing the reaction between artlaatd PBP2a in the cell
are used. This is a pre-steady state reaction, with the pdeask, (rate of inacti-
vation of PBP2a), an, (dissociation constant) used to describe it. The ratio of
these valuesk{/K,), or the second order rate constant, is a convenient measure
the antibiotic efficacy at inhibiting PBP2a function. The@portion of PBP2a that
is inactivated per seconH, (the apparent first order rate constant), at a given drug
concentration can be calculated as a function of these Edeas(equation 3.1)

[76].

ko[ AD]

" R+ (AT &1

Values for the kinetic parametets, andK,, of PBP2a were derived from the
biological literature (Table 3.2) [77, 78, 20]. By inputithese parameters it was
possible to estimate the proportion of PBP2a de-activayedntibiotic each time
step. Once the proportion of acylated PBP2a crosses arcéntashold, then cell

division is inhibited (see above).

3.2.3 [-lactamase Enzymes

[b-lactamase enzymes are proteins produced by resistaetiaaitiat attack a com-
mon type of antibiotic, called-lactams, which includes penicillins, such as peni-
cillin G and ampicillin, and cephalosporins such as cephato In the case of
MRSA bacteria, most of the enzyme is released into the extttdar milieu where

it binds to and cleaves antibiotic molecules (Fig. 2.2B).
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When ag-lactamase-producing bacterium comes into contact witlbiatic,
an intracellular signal is sent to activate expression efHactamase gene. A
true/false flag fors-lactamase expression is associated with each bactegalt.ag
After the first interaction (when the flag is changed to trti®gre is an exponential
increase in thg-lactamase production rate until the maximum rate is recelfter
approximately eighty minutes [59]. This corresponds todbtvation of gene ex-
pression mediated by antibiotic binding to the signalgcharcer protein BlaR1, as
described in chapter 3.

[b-lactamase is released into the local patch where it is sutgaiffusion ac-
cording to Fick’s First law of diffusion, as described abovealso has a defined
half-life parameter determining its rate of degradatioerotime in the environ-
ment. When antibiotic has been removed from the environymerniepression of
[-lactamase expression occurs (BlaR1 is no longer autuatetl - software flag
changed to false).

The interactions betweeftlactamase enzymes and antibiotic molecules in the
same patch are governed by defined kinetic rules. Michaégtisten kinetics are
used to describe the reaction, with the reaction refecalculated as the rate at

which antibiotic is cleaved (or de-activated) by the enzyewuation 3.2):

v o kcat [E]t [Ab]

- (3.2)

The kinetic parameters required as input to the model ardum®ver rate,
k..:, and the Michaelis constark,,, the ratio of which K..;/K;,) is often used
as a measure of enzyme efficiency [19]. These were derived fihe biological

literature for MRSA (Table 3.2) [19].H]; and [Ab] refer to the concentrations of
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Table 3.2: Kinetic Parameters gflactam Antibiotics versus Type A and Type C
[G-lactamase-producing MRSA. Pen G = Penicillin G; Amp = Anilpic Ceph =
Cephalothin.

Type A MRSA Type C MRSA
PenG| Amp Ceph | Pen G| Amp Ceph
Keat (1) | 171.0| 308.0 | 0.015 | 210.0| 355.0 | 0.095
Ky (uM) | 51.1 | 255.0 6.8 55.9 | 122.0 5.2
ky (s71) 0.185| 0.0047| 0.00115| 0.185| 0.0047| 0.00115
Kg (uM) | 15400 495 586 | 15400 495 586

Parameter

(-lactamase enzyme (sum of both free and occupied enzymejrdifotic in the

local patch respectively.

3.2.4 Pro-Drugs

The basic premise of the enzyme-catalysed therapeutiaéiotn (ECTA) pro-drug
treatment strategy is that a substrate-like pro-drug nubdecontaining a-lactam
structure is administered to treat an infection. When it esrmto contact with
[-lactamase producing bacteria, it undergoes therapecttii@don by cleavage of
its B-lactam ring which causes selective release of a cytotaxienaicrobial agent
[79, 80]. More details about this approach are included aptér 6.

From a conceptual standpoint, the pro-drugs are represast@antimicrobial
agents that start the simulation in an inactive form, bubbee flagged to ‘active’
status when they come into contact witHactamase enzymes in the environment.
The reaction between pro-drug apdactamase is defined by the same reaction
kinetics that were used to represent the antibiotiectamase reaction (equation
3.2). This is because it is essentially the same reactiondsst as-lactam ring
structure in the pro-drug molecule and thactamase enzyme. However, the out-

come of the interaction is reversed, whereby the pro-drutgoude is activated
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after cleavage of itg-lactam ring structure, rather than inactivated as is tlse ca
with traditional antibiotic molecules.

The active component of a pro-drug may be any type of antohiat agent
depending on how it was designed. Therefore, in order tcesgmt specific pro-
drugs, the Micro-Gen model would have to be adapted to talceancount the
specific mode of action of the particular active agent reddad-or the purposes
of this study, the aim was to assess the pro-drug deliveriesy$rom a general
perspective so the emphasis was placed on analysing tlotsaffiethes-lactamase
mediated activation step.

For the case study described in chapter 6, the active compohthe pro-drugs
NB2001 and NB2030 was triclosan. The mode of action of thigyds not fully
understood, although it is thought that an important conepois the binding to
the enoyl-[acyl-carrier-protein] reductase (Fabl) eneyimvolved in the bacterial
fatty acid synthesis cycle [81]. The interaction betweenabtivated component of
the pro-drug and the bacterial cell was modelled using thesprady state reaction

kinetics described above for thielactam antibiotics (equation 3.1).

3.3 Program Structure

3.3.1 Program Flow Structure

Micro-Gen is coded in the C++ object-oriented programmangglage with indi-
vidual components of the simulation represented by soéwdhijects. At the start
of a simulation, the main components of the environmentpttehes, are initial-
ized, along with the bacterial fabric containing the poopdé-initialized bacterial

agents.
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The principle activities of the simulation are carried outidg the main pro-
gram loop which represents a discrete time step of the médgl 8.8). The loop
is configured to represent approximately two seconds oftiea, although this is
modifiable by the user to apply a different temporal grantylairhe various time-
dependent input parameters (e.g. nutrient intake ratiiaiit kinetic parameters)
must be configured to the specified timescale.

The program loop is divided into six distinct steps duringickhdifferent as-
pects of the simulation are implemented. The first stepysiiin) is to update the
levels of the various molecular constituents (nutrientsipgotics and enzymes) of
the environment. Fick’s first law of diffusion is applied &id point to model the
movement of free molecules between patches.

Step two (metabolism) is when the basic metabolic procesistse bacterial
cells are modelled. This includes subtracting a survivat émm the bacterium’s
energy stock, representing energy expended on basic hersiek duties in the
cell. If g-lactamase gene expression is active then the enzyme isiggddand
secreted into the environment, with an associated eneigjy co

The third step is to update the positions of the bacteriahtgley applying a
movement algorithm. In the case of bacteria capable of fiexpcomotion, such
as Escherichia coli the model implements their characteristic “run and turhble
motion [17]. E. coli cells can respond to a chemical stimulus (chemotaxis) ssich a
a positive nutrient gradient by extending the length ofithem phase relative to the
tumble phase. This results in movement of the cells towagi®ns of higher nutri-
ent contentS. aureusells are immotile so there is no active movement algorithm
associated with them. However, if a patch becomes overaduiten it is possi-
ble for cells to be shunted into an adjacent patch, in whide @ overcrowding

algorithm is applied at this step (Fig. 3.1B).
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Figure 3.8: Diagram of program flow structure in Micro-Gerciaial Simulator,
including the main stages of program loop.

Step 4 (agent interactions) of the program loop is when thetld rules for
bacteria-antibiotic and-lactamase-antibiotic interactions are applied. These re
actions are governed by defined kinetic rules, with pararseaterived from bio-
chemical studies used to determine the reaction rates @&hs3.2). During the
following step (feeding), the bacterial agents take upientifrom the environment

at a defined rate. In the case of the simulations carried ouhi® study, the rate is
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that which will result in a generation time of 29 minutes [73]

The final stage of the loop is when bacterial agents reprodocerding to the
process of binary fission, producing two identical daughedis. Reproduction is
dependent on the fact that the bacterial cell's energy $taseexceeded a defined
threshold for replication, and the level of antibiotic dayadproportion of inacti-
vated PBP) is below a critical level. The exit conditions floe simulation are if
there are no longer any bacterial agents alive or a specitiethar of loops have

been completed.

3.3.2 Graphical Output

The simulation may be run with an optional dynamic graphdtsplay that shows
the positions of bacteria in the environment and the levielaxdous molecular com-
ponents such as nutrients or antibiotics in real-time. Tarsbe useful for studying
pattern formation in colonies. For example, in Figure h®,¢haracteristic circular
colonies ofS. aureudacteria can be seen.

The model also outputs a movie file compatible with the opmuree 3D visual-
isation software ‘Animp’ (Animated Particles) developgdiay Seyfarth (Univer-
sity of Southern Mississippi, Hattiesburg, MS 39406, USR)imp is an OpenGL-
based 3D renderer that takes advantage of modern 3D graganasfor visualising
particles in three-dimensional space. Although Micro-Gea two dimensional
model (X and Y dimensions), it produces a pseudo-3D outmut \(fsualisation
purposes) by assigning the Z dimension to represent the ewuaitbacterial cells
in a patch (Fig. 3.10). This 3D visualisation is useful, faample, for assessing
the effect of the bacterial overcrowding algorithm on celhdities within a colony

(Fig. 3.5). However, it will become more important when Migéen is expanded to
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Figure 3.9: Screenshot of Micro-Gen simulation showingwgng S. aureus
colonies (yellow-brown, lighter=higher bacterial biormpen simulated nutrient
agar medium. Shaded blue contours represent nutrientegrtaflighter blue =
higher nutrient concentration).

represent three-dimensional space, which is an imponttintef aim of the project.

3.3.3 Parallelisation

A challenge of modelling from the individual cellular levap is that it requires
a significant amount of computing resources in order to sepléo biologically
realistic numbers of cells. For example, the concentratiomacterial cells in na-
ture can range from 206 10'° cells per millilitre of seawater [82]. Despite rapid
advances in traditional desktop computers, due to their ong@nd performance
limitations it is currently not practically feasible to meldhe numbers of agents
typically found in nature using only a single processor. réfare, it is important

to be able to take advantage of parallel high performancepating resources in
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Figure 3.10: Screenshot of Animp 3D movie file generated bgrtdiGen simula-
tion showing growingS. aureusolonies (yellow spheres). Images were produced
using the open-source ‘Animp’ 3D visualisation softwareMgloped by Ray Sey-
farth, University of Southern Mississippi, USA).

order to tackle problem at a more realistic scale.

Micro-Gen is designed to take advantage of high performaooeputing re-
sources by incorporating an implementation of the MessagsiRg Interface (MPI)
for running in parallel on multiple computers. The strate§ylomain decompo-
sition is used for parallelisation, whereby the simulatemvironment is divided
equally among the computing nodes (Fig. 3.12). Each nodeepses its section of
the environment independently of the other nodes. Commatinit between adja-
cent nodes occurs at overlapping boundary conditions wingaatities such as nu-
trient, antibiotic and enzyme levels are exchanged dur@ed ¢éme step (Fig. 3.13).
For example, when a bacterial cell crosses over the borgeratng parts of the

environment controlled by two different processors/cotamithen the bacterium
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Figure 3.11: Diagram of principal classes of Micro-Gen madeng standard UML
notation. Yellow shaded components represent base clakaageneralised agent-
based model. Derived classes specific to Micro-Gen, whichato functionality
for representing bacterial cells and antibiotics, are stad blue-green.

is sent across to the other computer in an analogous way diinggea letter between
two postal addresses.

By being able to run the simulation in tandem across multipteces-
sors/computers, it frees up the traditional limitationsofputing resources found
in the desktop space. The model can be scaled up to as mamspoos/computers
as there are available in order to increase the environnmenfrem the microscopic
level up to a visible scale. However, it is important to opgenparallel algorithms
to avoid the process of diminishing returns as the numbegmatessors are in-

creased. This is because with more processors there is mafire/¢tommunication

between them and this can result in significant bottlenecks.
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Figure 3.12: Screenshot of Micro-Gen simulation runningamnallel on four com-
puting nodes, with bacterial colonies (yellow) growing autrrent agar medium
(blue). Lighter shade of blue represents higher nutrienteatration, and lighter
shade of yellow represent higher bacterial biomass in patch

For this reason, particular emphasis has been placed aniajtg the commu-
nication strategy for sending bacterial agents betwedardiit computer nodes in
Micro-Gen, while ensuring the integrity of the informationtransit. At each iter-
ation of the main program loop, data of the same type thatdbs transferred be-
tween nodes is collected into communication buffers and feat as a single large

message, rather than a series of smaller individual messageder to minimize

the latencies associated with multiple message calls. Aab&in communication
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Figure 3.13: Schematic representation of communicatidwdsen adjacent nodes
when Micro-Gen is run in a parallel configuration. Overlagpboundary condi-
tions are shaded.

technology for connecting computer nodes within clustesgehalso minimized the
overheads associated with communication traffic.

The movement of bacteria between nodes is complicated bfattehat MPI
has no in-built mechanisms for communicating software abjdetween nodes.
Therefore, the constituent cell traits of the bacterialrig@re communicated as
basic variables. When these variables are received, firglized bacterial agents
from the fabric data structure are used to make a copy of tb&eha on the receiv-
ing node. The availability of a pool of pre-initialized badtal agents minimizes
the performance penalty associated with this step, singebaeterial objects do

not have to be created/destroyed in memory each time a z&tgent is sentto a
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new node. This means that a simulation can be seamlesstiedigmong multiple

processors/computers to obtain an efficient speed-up atfiglarchitectures.

3.3.3.1 Parallel Performance

It is important to be able to scale up the simulation to regmébiologically realis-
tic numbers of agents in order to correctly predict emergepiulation behaviour.
The model is scalable to represent population sizesidf bacterial agents, so as
to represent more closely the numbers found in nature. Fampie, when simu-
lating the standard growth curve of a bacterial populatidgth & maximum size of
0.5x 10 bacteria (environment size = 1000atches) it takes 158 minutes to simu-
late 33 hours of real-time on a local 16 x2.8 GHz Pentium 4 aagimg cluster (Dell
PowerEdge 1750), with the total memory footprint of the pamg across all nodes
<512 MB. The parallel efficiency of the algorithm was found ®390% when
tested in parallel across the 16 nodes (Table 3.3) [18].

Table 3.3: Parallel Efficiency of Micro-Gen When Run on a 1GiBl¢Intel Xeon
2.8 GHz) Computing Cluster

No. of Nodeg Parallel Efficiency (%)
4 97.6
9 97.2
16 91.1

The communication overheads associated with sending afetiveen nodes
are minimized by the use of the ‘fabric’ data structure covitg a pool of pre-
initialized bacterial agents (see above). A defragmematutine is applied to the
bacterial fabric to prevent efficiency losses accumulasggents are interchanged
between nodes. Without this defragmentation step, theathexecution time would

increase by over four-fold for the test conditions abovetduggadual fragmentation
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of the fabric data structure.
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CHAPTERA4

POPULATION DYNAMICS

4.1 Overview

Micro-Gen is a highly scalable, parallel model that can bedu® test theoreti-
cal assumptions about bacterial cell biology and how itca$f@verall population
dynamics. A number of test simulations were carried out fuae the mechanis-
tic basis of the model and how changes in the input parametst the model
output. This involved testing situations or parameter @althat may not occur in
nature (so-called ‘strong cues’) in order to gain insigho ithe mechanisms im-
portant for the model output. Examining extreme or hypotia¢tscenarios is an
important step in developing an agent-based model, dus iohierent complexity,

in order to understand how the model works and identify paklimitations [13].

4.2 System Dynamics

For the test simulations, the effect of one parameter wasstiyated while all other
parameters were kept constant in order to isolate the irduef the particular

parameter under investigation. For the same reason, theiteslations involved
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a phenotypically homogeneous bacterial population grgwma heterogeneous
environment. This is to avoid any ambiguity in the outpuuitgsg from random
factors related to different competing sub-population@welver, the strength of
the agent-based approach exists in being able to easibdunte this heterogeneity
into the model in order to study more complex situations ciwvhwill be the topic of
future work.

The strain of bacteria modelled in these simulations was MRSclinically
important pathogenic strain (see Chap. 3). The dimensitthe@nvironment were
1000 x 1000 patches or grid elements (approximatetyni? in real-world) with
each patch containing 80000 simulation units (called “@emunits”) of nutrient.
Biomass units are used to express the amount of nutrieriablarelative to the

bacterial nutrient intake rate (10 b.u. logj.

4.2.1 Standard Bacterial Growth Curve

Populations of bacteria follow a standard growth curve =timg of lag, log, sta-
tionary and death phases, when grown in nutrient limitetlicelconditions. During
the initial lag phase, there is no net increase in cell nusbsrthe cells adapt to
their new conditions. The log phase is when the bacterialbmimincrease ex-
ponentially until nutrient or space constraints limit thgiowth and they enter the
stationary phase. The final death phase occurs when thalaleaiiutrient reserves
have been exhausted. This behaviour is reproduced in thelrhgdncorporating
five key parameters: lag phase length; nutrient intake bimie/ass threshold for
division; survival cost; and relative stationary phaseahetic rate (see Chap. 3).
The lag phase is the initial period after inoculation in fresulture medium

when cell division has not begun to occur [83]. During thisgd, the bacteria
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begin to synthesize macromolecules required to transpdrpeocess the nutrients
from their new environment. Once they have adapted to their@nment, cell
division begins to occur and the bacteria enter the logaithphase of growth.
This is typified by an exponential rate of increase in cell bers until nutrient
availability or accumulation of waste products begins taitigrowth.

When the nutrient content of the medium has been exhauketatcteria typ-
ically enter the stationary phase where no net increaseddse in cell numbers is
observed. Bacteria in this phase are characterised by daolietlly less active and
more resistant state [84, 85]. A low level of endogenous bwdism is maintained
and the rate of protein turnover by the cell increases. Heweas nutrient starva-
tion persists, eventually most of the cells enter the del#s@, characterised by an
exponential decrease in viable cell counts.

The length of the lag phase is influenced by the energy stateeafells when
they are added to the environment and the lag phase lengiimpger. Each cell
is randomly set with a particular energy state (in biomastsyat the start of the
simulation. The maximum rate of growth during the exporamihase is deter-
mined by the nutrient intake rate relative to the biomasastold for division (see
Chap. 3). The effect of the survival cost parameter can be iseEigure 4.1A by
varying over a range of 1-64% (relative to nutrient intakieyai.e. with a value
of 1%, the bacterial cell burns up approximately 1% of theieat it absorbs in
normal metabolic activities per loop. A survival cost inpalue of 8% or more
results in no apparent stationary phase for the simulatpdlpbon as a whole, but
instead the population immediately enters the death pludlesving the exponen-
tial phase. Also, the relative stationary phase metabati& parameter is important
for determining the length of the stationary phase (FigBj.However, it has no

influence on the exponential phase or entry into the statyoplaase.
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Figure 4.1: Log growth curves of simulated MRSA bacteriatratg grown under
simulatedin vitro culture conditions with different input values fofA) “Survival
Cost” parameter (1% - 64%) - values represented as a pegeenfahe bacterial
nutrient intake rate (10.0.u.loop! - see Chap. 3)(B) “Stationary Phase Rela-
tive Metabolic Rate” (0.01- 1.0) - representing the relasurvival cost during the
stationary phase when the bacterial cells enter a statelo€eel metabolic activity
induced by severe stress such as nutrient deprivation.
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4.2.2 Antibiotic Intake Rate

Figure 4.5 shows results from varying the antibiotic inta&tes for penicillin G,
ampicillin and cephalothin on the length of time bacteriahvgh is inhibited by the
antibiotics. The antibiotic intake rate is proportionatihe amount of PBP proteins
in the cell membrane db. aureus As this parameter is increased, more antibiotic
is bound per time step, thus depleting the available resemye local environment
more quickly. A range of values was explored in order to asHas impact of this
parameter on the model.

The intake rate parameter was varied in the range®® 10-° M loop~! to
investigate how this influences the output of the simulatiBar cephalothin, the
rate of antibiotic intake does not have any significant eftecthe inhibition time
of the drug over the wide range of values tested. For pemicdland ampicillin,
the antibiotic intake rate directly influences the inhiittime up to a certain point.
However, interestingly, in the range 10 10-° there is no significant change in the
inhibition times. Therefore, there seems to be an uppet ({bdi®), in the context
of this model, above which a higher number of PBPs in the celthirane does not
affect the efficacy of the antibiotics.

For all further test simulations, an antibiotic intake rat€.0 x 10~ was chosen
which represents a comparatively high number of PBP prsteirthe cell mem-
brane. This was chosen in order to represent the worst casarse in terms of
drug treatment success, i.e. an MRSA bacterial cell thaesggs a high number of
PBP proteins will be inherently more resistanttéactam antibiotics. However, fu-
ture work will include expanding the model to include a moegadled quantitative
representation of the interactions of the antibiotic moles not only with PBP2a,

but also with the other PBPs (1 - 4) characteristiSodureudacteria, using exper-
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imentally estimated data about the total number of PBP sqmee cell [86]. Then a

better quantitative estimation of the antibiotic intakinaould be able to be made.

4.2.3 Antibiotic Half-Life

In order to explore the effects of antibiotic half-life oretbutcome of treatment of
MRSA, this parameter was varied over a range of 5 minutes tougshfor the an-
tibiotics penicillin G and cephalothin (Fig. 4.2). Thesetantibiotics were chosen
in order to illustrate the different responses that can otzwchanges in half-life
depending on the type of antibiotic used. Cephalothin islipted to be strongly
sensitive to changes in half-life. For example, increasimghalf-life from 30 min-
utes to 480 minutes results in a ten-fold increase in thethesigime MRSA growth
is inhibited by the antibiotic. However, for penicillin ansilar change in half-life
results in less than a 10% increase in inhibition time.

The half-life of an antibiotic can be an important determinaf treatment suc-
cess. It varies considerable depending on environmentalitons, and in partic-
ular the half-life of an antibiotigén vivo (i.e. in a patient) is often considerably
reduced compared to vitro laboratory conditions. Therefore, it is useful to un-
derstand the impact of the half-life parameter on our ptedicesults for antibiotic
efficacy.

It is interesting to note from the results that penicillin £not as sensitive to
half-life changes as cephalothin is. A possible explamdfioo this is that it is due
to the different reaction profiles of cephalothin and péimcic with MRSA. As
will be discussed further in the next chapter, cephalothirelatively resistant to
b-lactamase enzymes (loky,:/K,;) secreted by the MRSA bacteria. Cephalothin

binds slowly to penicillin-binding protein 2a (PBP 2a) iretbacterial cell mem-
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Figure 4.2: Predicted effect of half-life parameter of hiatiic molecules on length
of time bacterial growth is inhibited. Antibiotic addede&f4.4 hours of simulated
time, during exponential phase of growth. Cephalothin=108/ml; Penicillin

G =72.1u9/ml. Round points represent default input values for hdfparameters
(Ceph,=30min; Pen G=42min) [57].

brane, and increasing the half-life directly improves effic by allowing more
antibiotic to survive for a longer time to bind to the MRSA.nR&llin G on the
other hand is cleaved more rapidly Bylactamase enzymes in the environment and

therefore, increasing its half-life does not improve thigcaty since it is rapidly

destroyed by the-lactamases.

4.2.4 Diffusion Rate

In order to investigate the effects of nutrient availapitih the growth and develop-
ment of bacterial colonies the user-defined diffusion coeffit for Fick’s First Law
of diffusion was varied over the range 0.0-0.2, where a lacgeefficient means

a higher rate of diffusion (Fig. 4.3). The rate of diffusiaan important param-
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Figure 4.3: Effect of rate of diffusion on log growth curvelssimulated MRSA
bacterial agents grown under simulatadvitro culture conditions. The diffusion
co-efficient for Fick’s First Law of diffusion was varied lveten 0.0 - 0.2. The
characteristic phases of the standard bacterial growtredlag, log, stationary and
death phases) are observable. Environment size =21@@@hes. Cellular input
parameters listed in Chapter 3.
eter dictating population development as it limits the $fan of nutrients towards
the interior of a bacterial colony. The diffusion co-effiacidor Fick’s First Law of
diffusion may be configured to represent different envirents by calibrating with
experimental results. However, for the tests here the aimtwgive a more gener-
alised assessment of the mechanistic influences of thesdiffalgorithm on model
output. It must be noted that the diffusion algorithm applie molecular move-
ment between patches, not within a patch. Each discreté patgrid element, is
assumed to have a homogeneous concentration of molecules.

As can be seen in figure 4.3, in the absence of diffusion (r@t@)the bac-

terial growth curve still follows the four standard stageperted undem vitro

culture conditions. However, the maximum population s&sdverely limited due
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to the lack of nutrient transport between patches. Thisccexplain why bacterial
colonies tend to thrive better in conditions of water avalley where nutrients are
more readily transported by diffusion. In arid conditiotige lack of nutrient diffu-
sion would be a significant growth-limiting factor, asiderfr problems associated
with dessication.

When a trace amount of diffusion (rate =0.001) is applied,ttaximum bac-
terial population size increases by 2 - 3 orders of magnitwae conditions where
diffusion is absent. However, as the diffusion rate is iasezl the maximum bacte-
rial population size is limited by the total nutrient contécarrying capacity of the
environment). Higher diffusion rates result in the popolatpeaking in a shorter
time, but the carrying capacity remains similar. It can beateded from this that
environments with high rates of diffusion do not confer anaadage to bacterial
colonies in terms of the overall population sizes they supptowever, these con-
ditions may allow the colony to gain a foothold more quicklioaing a critical
mass to be developed which is more resistant to externakstse

When antibiotic is added to the bacterial cultures, the oditdiffusion in the
environment can have a significant impact on the efficacy effitibiotic. To in-
vestigate this, the length of time bacterial growth washitbd (which is a measure
of antibiotic efficacy) was recorded over the range of diffasco-efficient values
0.001-0.2, using kinetic parameters for three common mtils: penicillin G,
ampicillin and cephalothin (Fig. 4.4). The results showgn#icant positive cor-
relation (Pen G: r0.992, p<0.01; Amp: r=0.993, pc0.01) between the rate
of diffusion and the inhibition times for penicillin G and @illin. However, for
cephalothin the diffusion rate has no effect on the lengtinoé growth is inhibited
(r=0.0).

The effect of environmental conditions such as the rateféfsion can have an
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Figure 4.4: Effect of varying diffusion co-efficient of FiskFirst Law of diffusion
(0.001-0.2) on the length of time bacterial growth is inteli after addition of
antibiotic to the environment. The antibiotic was addechét~ 4.4 hours) during
the exponential phase of growth of a population of Typg-Ractamase-producing
MRSA. Population size =-10° agents; environment size = 100patches. The
concentration of each antibiotic was: penicillin G (PenB=%ug/ml, ampicillin
(Amp) =69.9.g9/ml, and cephalothin (Ceph)=118.8/ml. Cellular and kinetic
input parameters listed in Chapter 3.
important impact on antibiotic treatment outcome. For epiamnit has been found
that some bacteria can form structured communities of setth as biofilms, where
the rate of diffusion within the colony is significantly remkd [87]. The results
from this computational analysis clearly indicate that erdased rate of diffusion
can result in reduced antibiotic efficacy, depending on ¥ipe of antibiotic, and
therefore increase the bacteria’s survival chances.

Cephalothin, which is unaffected by variations in the diftun rate, differs from
penicillin G and ampicillin in that it is a poor substrate tbe 5-lactamase enzyme
produced by MRSA bacteria. Penicillin G and ampicillin acgtbrapidly cleaved

by -lactamase enzymes secreted into the immediate envirdrohéme bacterial
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cells, and the diffusion rate limits the rate at which thelaatic is replenished.
For cephalothin, it is more resistant to cleavagefbkactamase enzyme and as a
result the local concentration of antibiotic does not daseesignificantly. Instead,
the factor that limits the efficacy of cephalothin is the ratédinding to the bac-
terial cells, which is not influenced by the diffusion ratehid situation indicates
how the specific biochemical profile of the antibiotic andinteractions with lo-
cal environmental factors can have a significant impact®reiction to changing
environmental conditions.

Knowledge of how antibiotics react under different corah8 could inform
the rational development of drug treatment regimens. Famgte, when treat-
ing bacterial infections where there is poor transport dilsgotic by diffusion (e.g.
biofilms), the model indicates that the susceptibility @& #ntibiotic tos-lactamase
plays a larger role than under normal free-diffusing candg. This may result in
deviations between the expected behaviour as determiogdl&boratory experi-

ments and the actual real-world outcome.

4.2.5 Population Size (Inoculum Effect)

The Minimum Inhibitory Concentration (MIC) of an antibiotis defined as the
minimum concentration of an antibiotic required to inhdpibwth of a bacterial cul-
turein vitro. Micro-Gen has been used previously to predict the MICs tibatics
by inputting relevant kinetic parameters for them [18, 88)e present manuscript
provides a detailed overview of the model structure andrpatars used to describe
the bacterial cells and focuses on the effects of changimgammental conditions
and population size on the development of an MRSA colony.

The MIC is an emergent property of the population that resiutim the in-
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teractions of the individual bacterial agents and antibsot However, it is some-
times difficult to relate information from cellular and moldar studies with this
high-level population parameter. The Micro-Gen model ptes a good theoreti-
cal framework for bridging this gap of knowledge betweendamental studies at
the individual level and high-level population paramesarsh as the MIC.

Figure 4.6 shows results from simulations investigatiregdfiect of population
size (inoculum effect) on the MICs of a humber of comm®tactam antibotics
against MRSA. Three types of MRSA bacteria were tested: -Fy§Eig. 4.6A)
and Type-C (Fig. 4.6B}p-lactamase producing strains, and-actamase-negative
strain (control). The strains are differentiated by theirque kinetic parameters
andg-lactamase production rates (see Chap. 3). Atectamase production rates
were estimated as described in chapter 3, and the antilbitdike rate was chosen
as described above. The diffusion rate for the environmeastset to 0.1 to ensure
that bacterial growth was not diffusion-limited (see Fig3)4

When the population size is varied by several orders of ntadaithe results
indicate that thed-lactamase status of the bacterial cells is an importartribomor
to the inoculum effect on the MIC (Fig. 4.6A, B). There is nean inoculum effect
associated with cephalothin against either Type-A or T¢p@&dactamase produc-
ing MRSA strains over the range of population sizes testéds i§ consistent with
the fact that cephalothin is a poor substrate for either tyfpé-lactamase. In the
case of larger population sizes, the total concentratioftlaictamase available to
bind and de-activate antibiotic is increased. Howevegesitephalothin is a poor
substrate for thegj-lactamase, the increased enzyme concentration does vt ha
a significant impact on the MIC. Rather the binding reactietween cephalothin
and PBP2a in the cell membrane of MRSA is the limiting factordephalothin’s

efficacy. It binds poorly to PBP2a, relative to penicillin @daampicillin, which
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results in a high MIC that remains unchanged over the rangmpfilation sizes
tested.

Penicillin G and ampicillin are better substrates for chepes by 3-lactamase
enzyme. As a result, the MIC increases in response to higherentrations of
enzyme in the environment. So even though penicillin G issshto be more
effective than cephalothin at low population sizes, in thgecof larger sizes(1(°
bacterial agents) the advantage is negated. Experimeathés of various strains
of f-lactamase producing. aureudave also shown a significantly larger inoculum
effect for penicillin G compared to cephalothin [89, 90].

The variation in the MIC of an antibiotic with different bactal population
sizes is an important factor to consider when determining éireatment regimens.
The stage of development of a bacterial infection and thebmurof bacteria present
at any given time can vary from patient to patient and ovecthase of a treatment
course. Therefore, it is useful to be able to quantify theaotpf these changes on

the response of bacterial colonies to treatment.

4.2.6 p-lactamase Production Rate

Another important parameter that influences the MIC gflactam drug is thes-
lactamase production rate. This can vary by several ordergagnitude between
different strains of MRSA. Therefore, it is important to @ss the impact of this
parameter on model output. In order to do this, simulatioasevearried out over
a range of production rate values in order to illustrate tiffierént effects it has
depending on the type of drug used (Fig. 4.7).

The results clearly show that for antibiotics that are desesio cleavage bys-

lactamase, such as penicillin G and ampicillin, there is@nsf positive correlation
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between the enzyme production rate and the MIC of the drug (Ber=0.999,
p<0.01; Amp: r=0.998, p: 0.01). On the other hand, cephalothin, which is rela-
tively resistant to cleavage by the enzymes has no comwelagtween its MIC and
the g-lactamase production rate (r=0.0). A more detailed dsicumsabout the ef-
fects of the kinetic parameters on cleavage of antibiotickepules bys-lactamase

is presented in the next chapter.

4.3 Conclusions

These initial results indicate that the emergent effectsfthe population dynamics
can have a dramatic impact on the efficacy of antibioticss Timiist be taken into
account in the rational development of drug treatment regsnas differences in
environmental conditions and bacterial phenotypes mayltresvaried responses
between individual patients. Micro-Gen provides a gooatatcal framework for

investigating these effects in the context of a simulatedrenment. The agent-
based modelling approach can be used to understand themstdaps and complex
sets of interactions taking place between the individuatponents of the system
and how they contribute to the high-level population dyr@miThe value of the
model in making quantitative predictions depends on thdahifity of good ex-

perimental data about individual bacterial cells. Howewecan also be used as
tool for developing a better mechanistic understandingopiutation dynamics by

varying key parameters and observing how they determinetigel output.
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Figure 4.5: Effect of antibiotic intake rate on log growthnees of simulated MRSA
bacterial agents grown under simulataditro culture conditions. The antibiotic
intake rate was varied over the range 10 10-° M loop~! to examine its impact
on the length of time bacterial growth is inhibited by theilaiotic. 71.9ug/ml
of Penicillin G (A), 62.9ug/ml of Ampicillin (B) or 119ug/ml of CephalothinC)
were added after 4.4 hours of growth, when the simulatecebattolonies were
in the exponential phase of growth.
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Figure 4.6: The effect of the bacterial population size dGanlum effect”) on
the Minimum Inhibitory Concentrations (MICs) of penicilliG (Pen), ampicillin
(Amp) and cephalothin (Ceph) against MRSA. Antibiotic wakled (time =4.4
hours) during the exponential phase of bacterial growtt,environment size was
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Figure 4.7: Predicted Minimum Inhibitory Concentratiom.I(C.) for penicillin
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lactamase production rates for Type A)(and Type C B) g-lactamase-producing
MRSA bacteria. This data was used to estimateddt@ctamase production rate for
each bacterial strain by cross-referencing with the erpemtally determined MICs
of penicillin G (Type A MRSA = 72.3ug/ml, Type C MRSA = 47.9.g/ml) [1].
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CHAPTERDS

KINETIC STUDIES

5.1 Overview

This chapter documents the results of integrating aniibresistance mechanisms
into the bacterial agents, representing MRSA, and anaiyttia system dynamics
of their interactions with some commaitlactam antibiotics. The aim of these
tests is to quantify the effects of the principal pharmanelic parameters gf-
lactam antibiotics on treatment outcome, and assess thpadt in terms of some
common high-level measures of antibiotic efficacy such asrtmimum inhibitory
concentration (MIC).

The complex relationship between the kinetics of drugs andrgent pharma-
codynamic parameters, such as the MIC, is an important areaglore for the
rational development of drug treatment regimens [69]. Fn®vides a basis for
understanding the dynamics involved in the developmenntbimtic resistance,
and help to develop strategies to limit its expansion. MiGen represents a good
theoretical framework for analysing tievitro dynamics of antibiotics interacting
with bacteria, though further work could involve extendthg model to represent

the more complex dynamics found in timevivo clinical setting.
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A set of input parameters, summarized in Table 5.3, are aar@ftgto represent
the attributes of the bacterial agents and the culture enwient. For this study,
the model was configured to represent MRSA bacteria growirapar plate cul-
ture. Parameters applicable to three types of MRSA baactezia used, which are
differentiated by theis-lactamase status: type A MRSA and type C MRSA are
named because they produgdactamase enzymes of these respective types. A
(-lactamase-negative strain was also included.

Type A and Type Q3-lactamase enzymes are distinguished by their kinetic pa-
rametersK..;/K,;) which are derived from experimental literature (see Tahl®).
They were chosen for this study because they are the most cortypes of3-
lactamase found in MRSA bacteria. A study by Nowmisal. (1994) found that
among 505-lactamase-producing MRSA isolates taken from nine locatiacross
the U.S.A., 80% expressed type/Alactamase and the remainder expressed type
C. Type B and type D¥-lactamases are thought to be less common among MRSA

strains [1].

5.2 Minimum Inhibitory Concentration

5.2.1 Overview

Figure 5.1 shows the simulated growth curve of an MRSA badteolony in
Micro-Gen. The effect of adding an inhibitory dose (103d/ml) of cephalothin
antibiotic after 3.5 hours of incubation on the growth cuivalso shown. The
control culture of MRSA, where no antibiotic is added, digfd the characteris-
tic standard growth curve of bacteria grown in nutrientded culture conditions

(see chapter 4). The addition of antibiotic during the exgrtial phase of growth
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Figure 5.1: Effect of antibiotic exposure on simulated logvgth curve of MRSA
bacteria in nutrient-limited culture conditions. Cephhlo antibiotic (103.1.g/ml)
added after 3.5 hours of incubation, during the exponeptiake of colony growth.
This results in inhibition of colony growth for a period ofrte (inhibition time) until
depletion of antibiotic according to its natural half-lifer hydrolysis by enzymes
such ass-lactamases, allows growth to resume.

causes inhibition of growth for a limited period of time. Tleagth of time bacterial
growth is inhibited is important as it determines the recanded dosage regimen
for an antibiotic. It is affected by factors such as the h&f-of the antibiotic, and
the action of bacterial enzymes, suchsalactamases, which degrade the antibiotic
molecules.

The Minimum Inhibitory Concentration (MIC) was calculatedm the model
for a number of commop-lactam antibiotics against MRSA, and compared with
real-world results. The MICs are estimated from the mode&riranalogous way
to the broth dilution test carried out in the experimentali@mment: a series of

simulations are carried out with varying concentrationgmtibiotic applied. The
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minimum concentration of antibiotic that results in comelmhibition of bacterial
growth for a pre-determined length of time is recorded asvi@.

Prior to carrying out a simulation to predict the antibid&C against a specific
strain of bacteria, thg-lactamase production rate per second per bacterial agent
must first be estimated by calibrating with a known MIC of atit@intic (in this
case penicillin G was used for calibration). The processlugs predicting the
MIC of penicillin G from the model over a range @flactamase production rates.
The production rate that gives an MIC equivalent to the expenmtally determined
value for penicillin G (in this case Type A MRSA = 72g/ml, Type C MRSA
= 47.9 ug/ml) is then used in all future simulations for that parkezustrain [1].
The -lactamase production rate must be estimated on a straitrdig basis due
to potential significant variation between strains. Fos study, the estimated-
lactamase production rate for Type A MRSA was 3.28 X"1,0M s~! per bacterial

agent and for Type C it was estimated to be 1.62 X"1@M s~ per agent.

5.2.2 Predicted MICs

Figure 5.2 contains the predicted MIC values for a numbeioafrmon antibiotics
compared with results from experimental studies publishetle scientific litera-
ture (table 5.1) [2, 1]. The MICs of the antibiotics were cédted for three differ-
ent types of MRSA bacteriai-lactamase producing strains (Type A, Type C), and
a (-lactamase negative strain. All other parameters, inolyidhe PBP2a kinetic
parameters, were maintained constant across the three eymacteria. Overall,
there is a good correspondence between the predicted ednedicro-Gen and
the real-world situation.

The most notable deviation between the predicted and erpatally deter-
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Figure 5.2: Predicted versus experimentally determinedmgdric mean
MIC + SEM (ug/ml) of penicillin G, ampicillin and cephalothin antibios against
three different types of MRSA. Experimentally determinetg! for 5-lactamase-
positive (Type A and C) strains are from Nores al. (1994). Experimentally
determined MICs fofi-lactamase-negative strains are from Maloetiral. (2003).
Predicted MICs are derived from triplicate simulationshwilhe geometric mean
MIC + SEM (ug/ml) displayed. Where SEM =0, no error bar is displayed. (A)
= Type A (-lactamase producing MRSA; (C) = Type &lactamase producing
MRSA,; (-) = f-lactamase-negative MRSA.

mined MIC values is when comparing the results for ampiciintibiotic against
Type A g-lactamase producing bacteria (5323 g/ml versus 89.317.0 ug/ml,
respectively). This may be due to intra-species variatiothe kinetic parameters
for MRSA or differences in experimental methods for obtagnihese values. The
second order rate constant for the PBP2a-ampicillin read®.0 M~! s~!) used

in the model was derived from experimental tests by Gravesdiard & Pratt
(1998). However, another study by Fuetaal. (2004) has calculated the value to be

5.0 M~! s7! for ampicillin. When the rate constant from Fuetzal. for ampicillin
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Table 5.1: Results from comparison of predicted versusraxieatally determined
MICs of penicillin G, ampicillin and cephalothin antibios (Ab) against three dif-
ferent types of MRSA. Geometric mean MMCSEM (.g/ml) given. Experimen-
tally determined MICs are from Norrist al. (1994) and Malouiret al. (2003)
[1, 2].

Ab Type A Type C No Lac

Pred Exp Pred Exp Pred Exp
PEN 68.3+-2.2 | 72.147.5| 48.0:2.7 | 47.9£5.7| 9.2+0.0 | 16+0.0
AMP | 52.4+3.2 | 89.3t17 | 51.6t4.7 | 50.5+6.2| 9.6+0.0 | 164+0.0
CEPH | 103.1£0.0 | 91.3+8.2 | 103.1£0.0| 83.9£8.9 | 103.14+-0.0 | 128+0.0

was used into the model instead, it outputted a predicted MI1€5.0+3.9 pg/ml,
which is closer to that recorded by Norris (82.87.0.g/ml).

Figure 5.3 show how the predicted MIC of an antibiotic desegatly on the
experimental estimates of the low-level kinetic parangeterhis illustrates how
variation in parameters at the molecular level can haverafgignt impact on over-
all treatment response. It is therefore important to obtaliable, accurate esti-
mates of the pharmacokinetic parameters for the antilsi@tid bacterial strains
being investigated, in order to make conclusions about thergent dynamics of
the system. There also may be significant natural variategwden bacterial iso-
lates recovered from different locations or under difféi@nditions.

The second-order rate constants calculated by Graveswéoda: Pratt (1998)
were chosen over Fudd al. (2004) because rate constants for all three antibiotics
used in this study were available, while Fuda’s paper diccoatain kinetic values
for penicillin or cephalothin. Due to variation in experintal techniques between
different studies it is important to obtain parameter eatas from a single source
for consistency.

Figure 5.4 contains the results from a broader analysissoMCs of a number
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Figure 5.3: Comparison of predicted MICs of ampicillin wgkinetic parameters
derived from a study by Graves-Woodward & Pratt (1998) orualsty Fudaet
al. (2004). Experimentally determined MICs are from Nowisal. (1994) and
Malouinet al. (2003). Predicted MICs are derived from triplicate simialias with
the geometric mean MI€ SEM (ug/ml) displayed. (A) = Type A3-lactamase-
producing MRSA,; (C) = Type @-lactamase producing MRSA; (-) 5lactamase-
negative MRSA.

of antibiotics compared with experimental estimates of Mfdm the biological
literature (table 5.2) [1-8]. For these antibiotics, kingtarameters were only
available for the PBP2a-antibiotic binding reaction antfoothe g-lactamase re-
action. Therefore, only &-lactamase-negative MRSA strain could be represented
in the simulations. Nonetheless, it is useful to be able imgare the predicted
MICs with those from the literature to assess the validityhef model across a
broader range of antibiotics.

The predicted MICs from Micro-Gen match closely the experntal MICs
across a wide selection gi-lactam antibiotics, comprising cephalosporins and

penicillins, including methicillin, and imipenem, a cagesmem (-lactam) antibi-
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Figure 5.4: Comparison of predicted MICs and experimepn@dtermined MICs
for eleven commors-lactam antibiotics versus-lactamase-negative MRSA bac-
teria. The experimental values represent the arithmetansmét SEM) of the min-
imum and maximum MIC values found in the literature [1 - 8]. 8 SEM =0, no
error bar is displayed.

otic. There is some degree of natural variation in the expentally estimated
MICs, particularly for the cephalosporins, but overallrthés a clear trend in the
data that matches closely with the predictions from MicenG The experimen-
tal MICs were chosen from strains of MRSA that were shown tg#@ctamase-
negative or where @-lactamase inhibitor had been administered in conjunction

with the antibiotic.

5.2.3 Discussion

The results indicate that the model represents a robustdopledicting the MIC

of an antibiotic against various different strains of baetbased on low-level bio-
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Table 5.2: Results from comparison of predicted MICs andegrpentally deter-
mined MICs for eleven commo#i-lactam antibiotics versus-lactamase-negative
MRSA bacteria. The minimum and maximum MIC values found iewéew of a
subset of the experimental literature are recorded [1, 2,58, 6, 7, 8].

Antibiotic Predicted | Exp MIC
MIC Min Max
Cefotaxime 506 256 512
Cefepime 151 4 128
Ceftazidime 117 128 256
Cephalothin 103 64 128
Cefoxitin 75.7 32 256
Cephaloridine|  29.6 16 64
Penicillin 9.2 16 16
Ampicillin 9.61 16 16
Oxacillin 22.9 8 64
Imipenem 321 32 32
Methicillin 204 250 250

chemical/kinetic data about the antibiotic [77, 78, 20, Eajme degree of variation
from the experimental results is to be expected due to dfffegs in the methods
and conditions used in the experimental studies to cakeuls MICs and the ki-
netic parameters for the bacteria. Also, it must be notetttiesexperimental results
were derived from cultures grown suspended in three-dineakliquid medium,
whereas Micro-Gen represents cultures growing in two-dsiaal space. This
may also contribute to some of the variation between theighertiand experimen-
tally determined results.

Nevertheless, taking these factors into account, the hegjnes of correspon-
dence between the predicted and experimental MIC resudisasuraging. These
results were obtained without attempting to fit’ the kimdtiput parameters to the

MIC results. The only parameter, which influences the kasetf the bacterial
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agents, that required to be fitted was thdactamase production rate. However,
the results in figure 5.4 representidactamase-negative strain, and thus the fit-
ting step did not have to be carried out in this case. Theeetbe predicted MICs
were purely an emergent property of the inputted kinetiapeaters for the PBP2a-
antibiotic binding reaction. There was still a close quiatitie agreement between
the experimental and simulation results even in this seenar

The Minimum Inhibitory Concentration (MIC) of an antibiotis a common
high-level measurement for assessing and comparing tlva@#s of different an-
tibiotics during the rational development of treatmentimegns. These results in-
dicate that a global parameter (MIC) for a bacterial coloap be successfully
predicted by inputting parameters at the cellular/molacigvel. This affords a dif-
ferent perspective on the factors that lead to a particul&@ béing associated with
an antibiotic against a specific strain of bacteria. The MA€ be de-constructed to
investigate the contributions of different cellular parders on it.

It must also be noted that the method for calculating the Md€antibiotics
experimentally is limited in its precision compared to cagtional predictions.
For example, the experimental MICs derived from Noetigl. (1994) were calcu-
lated by testing two-fold dilutions of antibiotics rangifrpm 2 - 2,048.g/ml and
calculating geometric means from triplicate tests [1]. sThecessarily constrains
the precision of the results, which may lead to some of thatran between the
predicted MICs and the experimental results. The level etision of the Micro-
Gen model’s predicted MICs can be controlled by the user lopsimg the amount
of different antibiotic concentrations to test. In the caé¢his study, incremental
antibiotic concentration increases of 20% were used. Alghogreater precision
can be obtained from experimental results by similarlyitgstnore concentrations

of antibiotic, due to logistical constraints often only tfiad dilution steps are used
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in the broth dilution process.

5.3 Kinetic Parameters

The pharmacokinetic parameters dictating the interastioh the antibiotic
molecules with3-lactamase enzymes in the environment and with penicillin-
binding protein 2a in the bacterial cell are the key deteamis of antibiotic efficacy
in the model. In order to explore the impact of these pararaete treatment out-
come, a number of simulations were carried out over a rangam@meter values.
Figure 5.5 gives a general overview of how the Minimum Intaty Concentration
of a drug is influenced by the kinetic parameters.

It can be seen that the/K, ratio, which is a measure of the antibiotic effi-
cacy at inhibiting PBP2a function, has the most pronounogghct on the MIC
of an antibiotic. The relative contribution of thielactamase reaction is less pro-
nounced. It does have a significant impact at higher valués,@K,, higher than
10°. However, in nature the catalytic efficienciesbfactamase enzymes have gen-
erally been found to bec10°. For example, thé..;/K,; values for type A MRSA
B3-lactamase range from 3.3 x% ~! s~! against penicilin Gto 2.2x M~ s!
against cephalothin. There may be some biological/phlysaastraints that limit
the development of more catalytically efficiefitlactamase enzymes, despite the
clear fitness advantage they would produce in the presengéaatam antibiotics.

The results in Figure 5.5 indicate that there would be a gtgatective advan-
tage for the evolution of PBP2a variants with redukgl,; values, when exposed
to antibiotics over prolonged periods of time. To a certadteet this has been the
case, such as in the case of methicillin antibiotic which Ib@sn shown to have

aky/K, value as low as 0.39 versus PBP2a [78]. However, in the cateegf-

96



1250

B 1000-1250
07501000 — |
0500-750

W 250-500
00-250

1000

750
MIC (ug/ml)

500

2

a
o

Log k./Ky (M7 s™)

9.4

Figure 5.5: Surface plot of predicted Minimum Inhibitory @@ntrations ofj-
lactam antibiotics over range of values fQ,/K,; andks/K,. K..:/K; is @a measure

of the catalytic efficiency of-lactamase enzyme at cleaving antibiotic molecules.
ko/K, is a measure of antibiotic efficacy at inhibiting PBP2a fiortt

lactamase-sensitive antibiotic penicillin G this valueld.0 [78]. These differences
may be due again to different biological constraints on th@ution of resistance
and/or differences in the patterns of exposure to the antidsi.

Figure 5.6 represents another way of viewing the data recardfigure 5.5. In
order to more clearly visualise the impact of fhactamase reaction kinetics on the
MIC, the data has been normalised to represent the relatiCs &k different values
of k.../K,;. It can be seen that bacterial strains with a lowgK, value respond
poorly to increases in the,,;,/K,,. For example, with &/K, value of< 0.24, there
is no visible increase in the MIC over the range&kgf/K,, values tested. Examples

of antibiotics which might exhibit this behaviour are thekalosporin antibiotics,
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Figure 5.6: Effect of varying catalytic efficienck.(;/K,;) of G-lactamase en-
zyme on minimum inhibitory concentration of antibiotic tviifferentk,/K, values
(0.02-1000.0).

as well as imipenem and methicillin.

This indicates that there would not be significant selegbiressure to evolve
more efficients-lactamases when tHg/K, value for the PBP2a reaction is low.
This agrees with experimental studies of several types-ta#ctamase enzymes
from MRSA bacteria that have been shown to cleave cephalimsaatibiotics (low
ko/K;) poorly relative to penicillin G [19]. The fact that they lewot evolved
greater specificities for cephalosporin antibiotics maybbeause there would be
little or no significant fithess advantage conferred. On tihewohand, there would
be a clear selective advantage for strains of MRSA with hightalytic efficiencies
against penicillin G.

The results in figure 5.7 display the impact of chandisié; on the MIC output.

There is a clear linear relationship between thekgl,; and the log relative MIC,
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Figure 5.7: Effect of varying second order rate constiyiK(;) of PBP2a-antibiotic
reaction on minimum inhibitory concentration of antib@tvith differentk.../K,,
values (10.0-2.62 x 1.

with the k..;,/K,; parameters influencing the slope of the line. This indicthas
there is selective pressure to evolve PBPs with a |dw#, value in the presence
of g-lactam antibiotics. This is to be expected since the PBR2airg reaction
is crucial for the mode of action gi-lactam antibiotics. The change in the MIC
is inversely proportional to the change in tkgK, when the value ok..,/K,, is
<10°. For example, with &.,,/K,; value of 1.64 x 10, reducing thek,/K, value
from 1000.0 to 0.06 (16,393-fold decrease) results in al%Bf8Id increase in the
MIC.

In the following sections, a more detailed examination efeffect of the kinetic
parameters on survival in the presence of antibiotics wlthrried out with refer-
ence to the antibiotics penicillin G, ampicillin and cepithin, for which detailed

experimental estimates of their kinetic parameters veP@R2a and two important
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types of3-lactamase are available.

5.3.1 Catalytic Efficiency of3-lactamase

The effects of Type A and Type G-lactamases on the efficacies of penicillin G,
ampicillin and cephalothin were examined by exploring tkationship between
the length of time growth was inhibited by the antibiotics #ime catalytic efficiency
(k.at/Kyy) Of the enzyme at hydrolytically cleaving thelactam ring (Fig. 5.8). The
inhibition time of an antibiotic is a convenient measure milziotic efficacy.

The catalytic efficiencies of the-lactamase enzymes were varied over the range
10 - 10'° M~! s! and the relative length of time growth was inhibited by eath a
tibiotic plotted. The length of time growth is inhibited by antibiotic is displayed
relative to its inhibition time when the default (experintaty estimated) kinetic
parameter values are used as input (Fig. 5.8). There anmegstregative correla-
tions between logi-lactamase efficiencyk(,;/K,;) and inhibition time for both
penicillin G and ampicillin (< —0.9, p< 0.01), and a weaker but still significant
(p<0.01) correlation with cephalothin inhibition time (Type A=—0.803, Type
C: r=-0.774). Correlation analyses to calculate the Pearsoelation coefficient
(r) and two-tailed significance level (P) were carried oulhg$SPSS statistical anal-
ysis software v11.0 (SPSS Inc., Chicago, IL, USA).

When correlation analyses are restricted to the smallénmiawe biologically
realistic, range of catalytic frequencies?1:010° M—! s~ there is no correlation
between inhibition time and log..;/K,, for cephalothin over this range (r=0.0).
On the other hand, for penicillin G and ampicillin there atié significant neg-
ative correlations present {r-0.85, p<0.01). These results agree qualitatively

with tests comparing antibiotic administered on its own amdonjunction with a
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(-lactamase inhibitor sulbactam [1]. The inhibitor sullaamstcompetes with an-
tibiotic molecules for binding tg-lactamase, effectively reducing the rate of hy-
drolytic activity of the enzyme against the antibiotic nml&es (i.e. equivalent to
a reducedk.,;/K,;). Norriset al. (1994) recorded a significant increase in antibi-
otic efficacy for penicillin and ampicillin in the presenck/®lactamase inhibitor,

whereas cephalothin was unaffected.

5.3.2 PBP2a Interactions

The other major mechanism of resistance characteristic REM bacteria is the
expression of PBP2a protein in the cell membrane, which lkasedsed binding
affinity for g-lactam antibiotics. The role of PBP2a binding efficiencynfiuenc-
ing the outcome of treatment was also investigated acredbitbe different types of
MRSA strains. The second order rate constant (a measurdibftion efficiency)
for the reaction between antibiotic and PBP2a in MRSA wagedawver a range of
several orders of magnitude for the antibiotics (Fig. 5.9).

There is a strong positive correlation between the bindffigiency of PBP2a
and the inhibition time for all the antibiotics against theete types of MRSA
(r<0.9 and p< 0.01). However, there is a steeper increase in the inhibttroe
of cephalothin relative to penicillin G and ampicillin whaeating the Type A and
Type Cj-lactamase producing strains (up to 4-fold difference apslof fitted lin-
ear regression lines). This difference is much less procediin the case of the
(-lactamase-negative strairt @-fold difference in slope).

Once again, these results are in qualitative agreementexjtrimental find-
ings comparing MRSA bacterial strains (Idw/K,) with methicillin-susceptiblé.
aureus(MSSA) strains (highk./K,) [3, 2]. Miller et al. (2005) showed a signifi-
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cant increase in cephalothin efficacy between the MRSA an8MSrains which
agrees with the results from Figure 5.9. The results fromoMialet al. (2003)
showed no significant difference in the antibiotic efficad@r penicillin/ampicillin
when comparings-lactamase-positive MRSA and MSSA strains, but there was a
significant increase when comparifgactamase-negative strains. This is also in
agreement with Micro-Gen'’s predictions from Figure 5.9 eThodel didn’t show

a notable increase in penicillinfampicillin efficacy féflactamase-positive strains
unlessk,/K,; was increased-10*-fold over their experimentally estimated natural

values [78].

5.3.3 Discussion

For both type A and type (j-lactamases, if the catalytic efficiency against
cephalothin is varied by up to three orders of magnitude tvercurrent natural
level, there is little discernible difference to the intibn time (<1% difference).
This could indicate why both Type A and Typedlactamases have relatively low
rates of hydrolysis of cephalothin, compared to penic@Birbacterial cells express-
ing more efficienp-lactamase against cephalothin would not have a signifesant
lutionary fithess advantage. By contrast, for penicillin & @ampicillin, over the
same range of catalytic efficiencies, there is a steep deeiadhe inhibition times
that strongly correlates with the catalytic efficiency. §buggests there would be
positive selective pressure for MRSA strains expressingeroatalytically efficient
(-lactamases when exposed to penicillin G or ampicillin asdended periods of
time.

Figure 5.9 displays the results of varying the second omergonstantk/K,)

of the reaction between antibiotic and PBP2a in the cell ntamda As this value
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is increased, the inhibition times of the antibiotics alscrease, as expected since
the damage they inflict on the bacterial cell is proportidoaheir ability to bind

to and inhibit PBP2a function. However, the slope of the euor cephalothin is
significantly steeper than either penicillin G or ampiailiwhen strains of MRSA
expressing either Type A or Type lactamase are tested.

This indicates that the PBP2a status of a bacterial cell rasg b more marked
impact on the clinical outcome of cephalothin treatmenhtpanicillin G or ampi-
cillin treatment, ing-lactamase expressing strains. This agrees with expetanen
studies which have shown that the MICs for penicillin/anipicare the same in
either MRSA (PBP2a-positive, lows/K;) or MSSA (PBP2a-negative, high/K,)
strains of-lactamase-producing bacteria. By contrast, there is &edatifference
recorded experimentally~100-fold) in the MIC of cephalothin between PBP2a-
positive and PBP2a-negative strains [3].

When aj-lactamase-negative strain of MRSA is tested, on the othed hthe
profiles of penicillin G and ampicillin match cephalothin realosely, i.e. efficacy
is inversely proportional to PBP2a binding affinity. Thibescause thg-lactamase
enzyme is not present to limit the efficacies of the antib&tSince thg-lactamase
status and production rate can vary considerably acrofeseit strains of MRSA,
it is important to be able to predict quantitatively how thekfferences will affect

the treatment response in a particular infection.

5.4 Conclusions and Future Work

Traditional methods of measuring antibiotic efficacy sushtl@e Minimum In-
hibitory Concentration are insufficient for understandimggcomplex dynamics that

lead to the rapid development and spread of antibiotic tesie within bacterial
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populations. However, the ability to investigate the ielaghip between individual
molecular components of the system and the overall treatmgoome can lead to
a better understanding of how to optimize antibiotic perfance and predict treat-
ment outcome. Micro-Gen can also be used to indicate evolaty pathways or
dead-ends that may exist for bacteria in response to atitilgioposure.

Future work will include using the model to investigate tlistem dynamics of
combination therapy with multiple classes of antibioticcdn also be used to test
hypothetical scenarios by varying the parameters of exjsintibiotics to explore
how potential novel compounds might act. It is a useful tookhe rapid screening
of drug compounds against a diverse rang8.cdureusstrains in simulated culture
conditions. The agent-based approach is also suitable doehing the evolution
of antibiotic resistance over time by incorporating gemetimponents into the bac-
terial agents. This would allow both the temporal and spdyinamics of antibiotic
resistance development to be examined.

Another important future aim of the Micro-Gen project is toael 5-lactamase-
dependent pro-drug delivery systems. Under these systemsighstrate-like pro-
drug molecule containing the-lactam ring structure undergoes therapeutic activa-
tion catalysed bys-lactamases to achieve selective release of a cytotoximiant
crobial agent [79, 80]. Micro-Gen would be a useful tool tammne the dynamics
of this system of activation and assess its therapeutimpatdrom a theoretical

standpoint. This will be the subject of the next chapter &f thesis.
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Figure 5.8: Predicted effects of varying catalytic effidms .../K,;) of Type A
(A) and Type C (B)5-lactamases on relative inhibition times of antibioticshit
bition times expressed relative to results when naturatbuaingk.../K,, values
used (see Table 5.3). Data points represent means of tipkeate simulations.
Dosage: Pen=71;8/ml; Amp =53.5ug/ml; Ceph =103.Lg/ml.
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Figure 5.9: Predicted effects of varying second order ratestant k»/K,;) of
PBP2a-Antibiotic reaction on relative inhibition timesr foype A (A), Type C
(B) and -lactamase-negative (C) MRSA strains. Inhibition timepressed rel-
ative to result when naturally occurring/K,; value used (see Table 5.3). Data
points represent means of three replicate simulations.a@msPen=71.3g/ml;
Amp =53.5ug/ml; Ceph =103.Lg/mlj06



Table 5.3: Inputted parameter values for simulations ab#ottc interactions with
MRSA bacteria in Micro-Gen modelb.u.=biomass unitsjoop=program loop

(~2sinreal time)

Type of Entity | Parameters (units) Input Value
Patch arealu) 20000
Environment | Patch nutrient levelq.u) 80000
Diffusion co-efficient 0.1
Generation timerfin) 29
Threshold for divisionl§.u.) 10000
Nutrient intake .u. loop™) 10.0
Survival cost .u. loop™!) 0.2
Bacterial Cell Stationary phase r(.alative metabolic rate 0.2
Lag phase lengtmin) 63
3-lactamase production rateNl s1):
Type A 3.28x107
Type C 1.62x107
(-lactamase production cost.() 0.1
Molecular weight Da) 30000
Half-life (s) 53640
Keat (871): Type A Type C
Penicillin G 171.0 210.0
Ampicillin 308.0 355.0
(-lactamase .
Cephalothin 0.015 0.095
Ky (uM): Type A Type C
Penicillin G 51.1 55.9
Ampicillin 255.0 122.0
Cephalothin 6.8 5.2
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Table 5.4: Inputted kinetic parameter valuds, (K;), molecular weight ¥ z)
and half-life parameters for simulations of antibioticaractions with penicillin-
binding protein 2a (PBP2a) in MRSA bacteria [1 - 8]. For deags of the chemical
structures of these antibiotics see figures 5.10 & 5.11

Antibiotic ks Ky Mz | Half-life
(s) | M) | (Da) (s
Cefotaxime 0.00035| 586 | 455.47| 3600
Ceftazidime 0.001 671 | 546.58| 6840
Cephalothin | 0.00115| 586 |396.44, 1800
Cefoxitin 0.001162| 586 |427.45 2520

Cefepime 0.0015 | 1618 | 480.56| 7200
Cephaloriding 0.0024 | 586 415 3660
Oxacillin 0.0016 | 180 | 401.44| 1800
Ampicillin 0.0047 | 495 | 349.41| 3600

Methicillin 0.0083 | 16900| 380.42| 3600
Penicillin G 0.185 | 15400| 334.39| 2520
Imipenem 0.0017 | 603 | 299.35| 3600
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Figure 5.10: Diagrams of the chemical structures of the akgsiporin antibiotics
listed in Table 5.4. Structures derived from the on-linerchndormatics database

DrugBank [57].
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Figure 5.11: Diagrams of the chemical structures of the qiini antibiotics,
oxacillin, ampicillin, penicillin G and methcillin, and ¢hcarbapenem antibiotic,
imipenem (see Table 5.4). Structures derived from the o@&-theminformatics
database DrugBank [57].
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CHAPTER G

PRO-DRUG DELIVERY SYSTEM

6.1 Overview

One of the strengths of the computational approach towandyisg bacteria-drug
interactions is the ability to model hypothetical scensaad explore how potential
novel compounds might act. For example, there has beentrneterest in alterna-
tive drug delivery systems to improve the specificity anccaffy of anti-microbial
drugs. One such example, is thdactamase dependent enzyme-catalysed thera-
peutic activation (ECTA) pro-drug delivery system. Thigpegach attempts to ex-
ploit the presence gf-lactamase enzymes in many species of pathogenic bacteria
to deliver inactive precursors of harmful anti-microbigleats which specifically
target these bacteria.

The basic premise of this approach is that a substrate-hselpug molecule
containing a3-lactam promoiety structure is administered to treat agatidn [91].
When it comes into contact with+lactamase producing bacteria, it undergoes ther-
apeutic activation by cleavage of itslactam ring which causes selective release
of a cytotoxic anti-microbial agent [80, 79, 92]. Therefotke presence of-

lactamase enzymes effectively decreases the survivalcebaof bacterial cells,
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resulting in negative selective pressure for expressiothege genes. This con-
trasts with the current situation where many commelactam drugs are rendered
ineffective by the action ofi-lactamases.

The theory of a3-lactamase dependent pro-drug delivery system repreaents
potentially promising approach for treatinglactamase-producing bacterial infec-
tions. However, there are complex system dynamics invdivatiinfluence the ef-
fectiveness of this technique. For this reason, it is udefahrry out computational
investigations to understand how factors such as the kmefithes-lactamase/pro-
drug interaction influence treatment outcome.

Micro-Gen is well suited for such investigations as it inmanates a model of the
kinetics of3-lactam ring cleavage in antibiotic molecules. By revegshe effect of
this reaction, whereby the drug is rendered active (notivcby this interaction,
some interesting preliminary insights can be made intoythe tf system dynamics

that would be expected to take place in a pro-drug delivesiesy.

6.2 System Dynamics of Pro-Drug Delivery System

The pro-drug delivery system differs from the traditionadtirod of applying a rel-
atively high dose of an active anti-microbial agent. Triadial antibiotics such as
penicillin G or cephalothin are administered in a pharmagalally active form,
which then degrades over time according to its natural lifalfer is inactivated
by enzymes such as-lactamases. A pro-drug, on the other hand, can be a rela-
tively inert molecule which only becomes pharmacologicalitive after a specific
activation event takes place.

It is possible that the pro-drug could have some pharmaamdbgctivity itself.

For example, in &-lactamase-dependent pro-drug delivery system Sthectam
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ring structure in the pro-drug could interact with the péhincbinding proteins in
the bacterial cell to inhibit cell growth. However, for thensilations carried out
here, the pro-drug is assumed to be in an inert, pharmaaalbginactive form.
This is in order to assess the effectiveness of this deliggsgem without intro-
ducing any ambiguities into the system due to direct antiotial activity. The
simulated pro-drug only becomes active after interactioth successful cleavage
by aj-lactamase enzyme.

As a result of this, when the pro-drug is added to the systemetis initially no
active anti-microbial agent present (no contaminatioough non-selective activa-
tion, such as chemical hydrolysis, is assumed). As destiibehapter 3, when a
bacterial cell interacts with &-lactam ring-containing moleculg-lactamase en-
zyme production is triggered. This starts at a low rate winicheases exponentially
until the full production rate is reached after about 80 nesy59]. During this
period, there is a gradual increase in the concentratiorctofedied antimicrobial
agents in the vicinity of the bacteria. When the concertratf active drug ex-
ceeds a threshold for activity then bacterial growth ishited. There is therefore
a time delay between the addition of a pro-drug and the actation of sufficient
activated drug molecules to inhibit growth. This does natusowith traditional
antibiotics, which immediately bind to bacterial cells ag@st contact according
to their kinetic rules.

Figure 6.1 shows a sample concentration curve for activatedmicrobial
agent when it is added in pro-drug form to a simulated colohiBSA (input
parameters listed in Table 6.2). There is a gradual increatbe active drug com-
pound until it crosses a certain threshold to cause inbibitf bacterial growth
(0.6-0.8ug/ml). Figures 6.1 also shows the effect of adding the adcivémi-

crobial agent directly (not in pro-drug form) at a concetina (0.81:.g/ml) that is
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Figure 6.1: Comparison of activities of hypothetical agtantibiotic applied di-
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activated anti-microbial agent (antibiotic) added at tin®3 hours. There is a clear
delay in inhibition of bacterial growth by the pro-drug dwethe requirement of a
(-lactamase-mediated activation step.
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above the threshold for inhibition of bacterial growth. Tdés a threshold in the
concentration of the active drug compound that must be eshtthinhibit bacterial
growth, which is dependent on the pharmacological progedf the activated drug
molecule. This results in a delay, due to thdactamase-mediated activation step,
between administration of the pro-drug and inhibition otteaial growth when

there is a sufficient concentration of activated drug albéela

6.2.1 Kinetics Studies

The speed and efficiency of activation of the pro-drug is apartant factor for
determining the efficacy of a pro-drug delivery system. A bemof simulations
were carried out to examine the effects of several diffepamameters on the acti-
vation of the pro-drug and inhibition of bacterial growth the activated product.
The same cellular parameters for representingctamase-producing MRSA that
were used in previous chapters were applied in the simulati@re (Table 6.2).
A hypothetical penicillin-based pro-drug was simulatee, the kinetic parameter
values k.../K,;) for penicillin G were used to define the interaction betwgen
lactamases and the pro-drug molecules. The kinetic valregenicillin G were
chosen because this represents a situation wherg-thetamase enzymes have a
high catalytic efficiency versus the sample pro-drug. Thresents an optimal
situation in order to assess the potential of this approach.

The active drug agent that arises from cleavage of the hgpiotl penicillin-
based pro-drug has kinetic parametdegi{;) which determine the rate of binding
to the bacterial cell (Table 6.2). Although the same paramek,/K,) that were
used to represent binding offalactam antibiotic to PBP2a in the bacterial cell are

used, this does not mean that the activated antimicrobégltagpresents@lactam
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Figure 6.2: Effect of catalytic efficienck(,./K,,) of -lactamase enzyme on min-
imum inhibitory concentration (MIC) of pro-drug. Three féifent pro-drugs are
graphed which differ by the rate of binding of their activhnti-microbial agent

to the bacterial celll;/K,; of activated anti-microbial agent varied between 62.5 and
1000 Mts™h).

antibiotic. These parameters are simply used because tbeyanvenient way of

carrying out initial modelling experiments and visualibeit outcomes. The spe-
cific target of the active drug is not specified. For the puesas this investigation

this is sufficient since the aim of the study is to assess thxalprg delivery system

rather than obtain a quantitative estimate of the efficagysgecific pro-drug. This

would require the availability of the kinetic parametersted to the interaction of

the activated antimicrobial agent with its specific targethie bacterial cell. Please
note that since the activated drug is assumed to lackaetam ring structure, it

is not subject to cleavage and re-inactivationblactamases.

Figure 6.2 shows the results of experiments investigatiegetfect of the ki-
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netic parameters on the minimum inhibitory concentratidiQ) of the penicillin-
based pro-drug. Three hypothetical variations of the prmrdvere investigated,
which differed by the rate of binding of the activated anterabial agent to the
bacterial cell k»/K; =62.5, 250, or 100M~! s7!). The catalytic efficiency of thg-
lactamase enzymé&,/K,,) at cleaving and activating the pro-drug was assessed by
varying over a range of 20 10° for each pro-drug variant. As would be expected,
higher values for the catalytic efficiency result in a lowelQMor the pro-drug.

The pattern in Figure 6.2 is the reverse of the trend seengur€i5.6 for tra-
ditional g-lactam antibiotics. This is one of the reasons why therateyést in the
(-lactamase-dependent pro-drug delivery system. It woelledpected that admin-
istration of g-lactamase-dependent pro-drugs could lead to evolutyoselective
pressure opposed to the current selective pressure exgrtethctam drugs.

However, it must be noted that for high catalytic efficiesdieere is a leveling
of the rate of decrease in the MIC (Fig. 6.2). This fitnesstgda” could negate
the selective advantage of bacteria produgidgctamases with lower catalytic ef-
ficiencies. For example, in Figure 6.2, there is a less th&ba B6crease in the
MIC above ak.,;/K,; value of approximately 10 On the other hand, Figure 5.6
shows that increasing the,,/K,; above 10 for active 3-lactam antibiotics (non
pro-drugs) results in a significant fithess advantage (upfadd7increase in MIC).

The dynamics between the negative selective pressure frordrpgs and pos-
itive selective pressure fromi-lactam antibiotics would be an important factor to
consider when assessing the possible evolution of drugteesie in bacteria in
response to these two therapeutic strategies. Howevegoimglex interplay of
biophysical, pharmacokinetic, pharmacological and apidégical factors which
would contribute to this are beyond the scope of this stuayedxtheless, this mod-

elling approach is useful for developing theories about hoelecular parameters
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may contribute to the dynamics observed.

6.2.2 Half-Life

One of the most important parameters that limits the effigafclgoth traditional
antibiotics and novel drug candidates such as pro-drugtheishalf-life of the
molecule. However, as demonstrated in Chapter 4, the ingfatis parameter
can vary substantially depending on the type of antibiosieds For example, the
efficacy of penicillin G was predicted to be relatively réarg to changes in its
half-life compared to cephalothin (Fig. 4.2). Since thefité of a molecule can
vary dramatically depending on local environmental caodd, it is important to
determine its influence in order to attempt to predict treathsuccess.

For this reason, computational analyses were carried oprddict the im-
pact of this parameter on the pro-drug delivery system (€ig). The half-life
for the penicillin-based hypothetical pro-drug was vatwedween 16 minutes and
2.8 hours, and the growth curve of the bacterial populatiottgd along with the
concentration curve of activated anti-microbial agentcas be seen in the graphs,
there is a certain threshold above which the concentrati@ctivated drug must
cross before inhibition of bacterial growth is observedlkiiis case, the threshold is
approximately 0.gg/ml).

With a half-life of <16 minutes, the concentration of activated anti-microbial
agent never exceeds the threshold required for growth itimb(Fig. 6.3A-B).
Therefore, the bacterial population follows the standamwh curve, eventually
entering the stationary phase due to nutrient limitatidtewever, when the half-
life of the pro-drug is increased to 1.4 hours or greaten the required concentra-

tion of active drug compound is reached and the length of groevth is inhibited
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is determined by the rate at which this compound degrade<iove.

The half-life of a pro-drug is therefore a very importantgraeter when deter-
mining its efficacy against-lactamase-producing. aureusacteria. This system
is particulary sensitive to the half-life parameter beesnisthe time delay between
administration of the pro-drug and activation of sufficigoaintities of active agent
to inhibit growth. The length of time that the drug inhibitsdberial growth is also

directly influenced by the activated drug’s own half-life.

6.2.3 Diffusion Rate

The impact of diffusion on the activity and dynamics of the-drug delivery sys-
tem was also investigated. This is an important paramegsdess because the pro-
drug delivery system depends on the targeted release wéactii-microbial agents
in the close vicinity of bacterial cells. Micro-Gen does ngpresent the complex
flow dynamics experienced in the vivo situation. However, the implementation
of an algorithm based on Fick’s First Law of diffusion allogsme insights to be
obtained on the role of diffusion dynamics in the system ($egpter 3).

Figure 6.5 shows the impact of varying the rate of diffusiothie environment
on the activation and efficacy of a penicillin-based progdriihe rate of diffusion
was varied by modifying the user-defined diffusion coeffitiD) for Fick’s First
Law of diffusion (see Fig. 3.1). This is a system-level paggnthat alters the rates
of diffusion of all the molecules (pro-drug, active drutjlactamase and nutrients)
in the environment, see Chap. 3. Higher values correspoadrore fluid/dynamic
environment whereas lower values result in a more viscoaig/environment. The
results from these simulations indicate that the rate dtisiibn has an important

influence on the availability of activated pro-drug in theimity of the bacterial
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Figure 6.4: Comparison of the local diffusion gradients ofivee antimicrobial
agents in the local environment gtlactamase producing§. aureusells for pro-
drug (A) and traditionalg-lactam antibioticsB). A. When administered in pro-
drug form the active antimicrobial agent concentrationighBst in the vicinity of
the bacterial cells due tg-lactamase-mediated activatio®. For traditional-
lactam antibiotics the concentration of active agent ideted in the vicinity of the
bacterial cells due to inactivation by thvelactamases.

cells as measured by the height of the peak in the concemirafiactivated anti-
microbial agent (Fig. 6.5).

With a lower diffusion rate, the concentration of activagedi-microbial agents
in the local vicinity of the bacterial cells increased moapidly. This may be
explained by the fact that with higher diffusion rates, thterof clearance of the
activated drug molecules from the vicinity of the bactecells would be quicker
(Fig. 6.4A). This type of behaviour would also be expecteaidcur in environments
where there is a high flow rate. The efficacy of the activataaracrobial agents
depends on their ability to stay long enough in the vicinityh® bacterial cells to
bind to and inhibit growth.

The pro-drug delivery system results in higher concertratiof activated drug
molecules in the direct vicinity of the bacterial cells. Tdestem is therefore sen-

sitive to any forces, such as diffusion or flow forces, thaymesult in dispersal of
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the activated compounds. It is important, therefore, te thks into account when
designing pro-drugs and try to take measures to minimizedhich as, for exam-
ple, designing molecules that have a greater binding afforitire electrostatically
attracted to the bacterial cells.

This problem is not so evident with traditional antibiotigpgoaches because
they usually involve the administration of relatively higloses of active anti-
microbial agent that are not specifically targeted to thallginity of the bacterial
cells. In fact for some types gf-lactam antibiotic, such as penicillin G, increas-
ing the diffusion rate results in increased antibiotic effi¢ (Fig. 4.4). This could
be due to the fact that higher rates of diffusion results gpeisal of3-lactamase-
inactivated penicillin G in the vicinity of the bacterialllseand replacement by
active penicillin G from elsewhere in the environment - thearse situation to the

pro-drug system (Fig. 6.4B).

6.2.4 (-lactamase Production Rate

It is clear that thes-lactamase production rate of the bacterial cells is an mapb
parameter to be considered when investigatingitiectamase-dependent pro-drug
delivery system. The production rate can vary considerabtween different bac-
terial strains, and this must be factored in when asseshmgisefulness of this
drug delivery system. Figure 6.6 shows the growth dynamfiesbacterial popula-
tion when exposed to a penicillin-based pro-drug (&g8nl), with thes-lactamase
production rate varied between 16 10~° uMs~! agent!. For reference, the-
lactamase production rate for naturally occurring Type ASMRunder these simu-
lation conditions was estimated to be 3.28 x 1AM s~! agent! (see chapter 3).

The results confirm the important role that thdactamase production rate has
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Figure 6.5: Effect of varying the user-defined diffusiongraeter D) for Fick’s
First Law of diffusion on the inhibition ofi-lactamase-producing. aureudacte-
rial growth by a penicillin-based pro-drug. The graphs igghe simulated log
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Figure 6.6: Effect of varying the-lactamase production rate on the inhibition
of p-lactamase-producing. aureusbacterial growth by a penicillin-based pro-
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on the efficacy of thej-lactamase dependent pro-drug delivery system. For these
simulations, it is assumed that there is no contaminatispontaneous activation

of the active anti-microbial agent apart from activationblactamase. In real life,
there may be some contamination with active compound thatdMead to posi-

tive results even when treatinglactamase-negative strains of bacteria. However,
this ambiguity can lead to problems when assessing the ffeetieeness of the
approach.

The active drug concentration threshold required for iitiwib of growth is ap-
proximately 0.8.g/ml. This threshold is determined by the minimum inhibjtor
concentration of the activated antimicrobial agent. Itasemorthy however, that
even at highs-lactamase production rates (e.g. Fig. 6.6E) where thgeadtiug
concentration remains above the threshold of inhibitioraftonger period of time,
the length of time growth is inhibited is not significantlyniger than at lower pro-
duction rates (Fig. 6.6C). The length of time growth is intad seems to be limited

by the half-life (2520 s) of the drug in this case (see Fig).6.3

6.3 Case Study: NB2001 & NB2030

In recent years, there has been increased interest in gévgloovel pro-drug
compounds for treating antibiotic resistant bacteria. Teaonpounds, called
NB2001 and NB2030, were recently developed that exploittHactamase de-
pendent enzyme-catalysed therapeutic activation (ECTéxdpug strategy [8, 80].
The general structure of these compounds consists of a lospleain backbone
(cephalothin derivative for NB2001 and cefazolin deriwvatior NB2030) with an
antibacterial agent (triclosan) in pro-drug form at the @sgion of the cephem nu-

cleus (Fig. 6.7) [8]. The antibacterial agent is released#gctamase-mediated
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Figure 6.7: Chemical structures of NB200QA)( NB2030 B) and triclosan C).
They consist of a cephalosporin side chain (NB2001 = ceptnaloNB2030 = ce-
fazolin) at position C-7, along with the enoyl reductasebitbr triclosan at the C-3
position of the cephem nucleus [80].

hydrolysis of thes-lactam ring in the pro-drug structure.

The active antibacterial agent released from NB2001 andd8B2s triclosan,
which possesses broad-spectrum antimicrobial activigyresy both gram-positive
and negative bacteria [93]. It is commonly used in healtle-gaoducts such as
handwash, toothpaste and surgical scrubs [94]. Triclosarbkeen shown to have
potent activity against. aureusbacteria by binding to the enoyl-[acyl-carrier-
protein] reductase (Fabl) enzyme involved in the bactéaity acid synthesis cycle
[81]. However, the complex interactions that triclosan hath the bacterial cell

which lead to its lethality have still not been fully elucidd [93].

In order to explore Micro-Gen'’s usefulness as a tool for gtigating the ef-
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fectiveness of the pro-drug strategy, information from élxperimental studies of
NB2001 and NB2030 were used to develop a pro-drug model afititeractions
with S. aureusacteria. The bacterial cellular parameters were maietktine same

as those used to represent TypeiAactamase-producing MRSA in the previous
chapters, including thg-lactamase-production rate which was estimated in chap-
ter 3. The kinetic parameters for the interaction betwegre T 5-lactamase and
the pro-drug compounds NB2001/NB2030 were derived fromeitperimental lit-
erature (see Table 6.2) [80].

The mechanism of action of triclosan is less well understbad the traditional
(S-lactam antibiotics. The main cellular target of triclosarbelieved to be the
Fabl enzyme of the fatty acid biosynthetic pathway (see @powv herefore, an
abstract representation of triclosan is incorporated éenntfodel by using the pre-
steady state reaction kinetic parametés#{;) to describe the binding of triclosan
in the bacterial cell to Fabl enzyme and concomitant intwhibf bacterial growth
(equation 3.1). This is a simplistic but reasonable repregion of the mode of
action of triclosan for the objectives of this study aimingaluating the pro-drug
delivery system.

The kinetic parameter values(K,) that determined triclosan’s interaction with
the bacterial cell were estimated by fitting the values tcetkerimental MIC esti-
mates determined from the literature [80]. These were ragiatl constant across
all the simulations carried out in order to assess the affetcthanges to the pro-

drug delivery system.
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6.3.1 MIC Test Results

Thein vitro activities of NB2001 and NB2030 (as well as the active ardrobial
agent triclosan on its own and a cephalosporin antibioptiatthin) againss. au-
reusbacteria from the experimental literature were compared priedicted values
from Micro-Gen (Table 6.1) [80]. Predicted values where ec#fed percentage of
contamination with free triclosan was assumed were aldadied. The percentage
of contamination was derived from the experimental resafltigh-pressure liquid
chromatography (HPLC) tests documented in the originaéerpental study [80].
Table 6.1: Comparison of predicted MICs (with and withoubtemnination with
free triclosan) from Micro-Gen model and experimentallyedmined MICs for
the pro-drugs NB2001 and NB2030, as well as triclosan antalefhin, versus

Type A [-lactamase-producing MRSA bacteria. Percentage contdimmwith
free triclosan: NB2001 =4 %, NB2030 =1 %.

Antimicrobial | Pred MIC | Pred (Contam) MIC Exp MIC
Drug (ng/ml) (ng/ml) (ng/ml)
NB2001 0.0014 0.001 0.0002 - 0.002
NB2030 0.0003 0.0003 0.0002 - 0.004
Triclosan 0.0001 NA <0.0002
Cephalothin 103.1 NA 64

The experimental estimates of the MICs for NB2001 and NB2@89 greatly

between different strains &. aureuswhich makes it difficult to verify the exper-
imental predictions with a high degree of accuracy. In paltér, thes-lactamase
production rates for the strains used in the experimentdyars were only qualita-
tively estimated by a colourimetric test with nitrocefin [8Blowever, given these
limitations, it is still encouraging that the predicted Mi@r NB2001 and NB2030
were within the range of values recorded in the experimesttealy.

The model also provided a means to assess the impact of pbtmntamina-
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Figure 6.8: Predicted effect of varying percentage contation with free tri-
closan (0% = pure pro-drug, 100% = pure triclosan) on Minimuahibitory Con-
centrations (MICs) of NB2001 and NB2030 versus Typg-factamase-producing
MRSA bacteria. Simulated drug compounds were added afddn@urs of incuba-
tion, during the exponential phase of bacterial growth.

tion with free triclosan on the MICs of the pro-drugs. For myde, the level of
contamination in NB2001 was estimated experimentally td &% The Micro-Gen
model predicts that this level of contamination would acddor approximately a
30 % decrease in the MIC compared to pure NB2001 (0.0010 ¥&x6014.g/ml).
On the other hand, the 1% contamination found in NB2030 wadipted to not
have a detectable effect on its MIC.

Due to the inherent problem of contamination in pro-drugpprations it is
useful to be able to quantify how this might distort MIC deté@rations. Theoret-
ical modelling of the drug compounds can provide a meanstimate this effect.
Figure 6.8 shows the effect of varying the percentage of fireiosan contami-
nation between 1-100 %, where 100 % represents pure tritldSance triclosan

has very potent antibacterial activity (MK0.0002..9/ml), the results of MIC de-
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terminations for the pro-drugs can be sensitive to contatian or $-lactamase-
independent hydrolysis.

In the case of NB2001, there is a strong negative correldtaween the MIC
and the proportion of contamination with free triclosan (¢&.997, p<0.01).
However, the MIC of NB2030 is less sensitive to distortionthg presence of
free triclosan, although there is still a significant negatorrelation (r =—0.868,
p=0.011) This is because the catalytic efficienky,(K,,) of the 3-lactamase en-
zyme versus NB2030 is ten-fold higher than NB2001, and theze¢he availability
of activated triclosan is less of a limiting factor on the e&dty.

If there is a high amount of contamination, then this can leadnislead-
ing results. For example, NB2001 and NB2030 were found taeHawer ex-
perimental MICs (0.0002g/ml) againstS. aureusstrain 29213 than strain PC1
(NB2001 =0.002:g/ml; NB2001 =0.004:.g/ml) [80]. This was in spite of the fact
that strain PC1 had a highgrlactamase production rate, and therefore would be
expected to have a lower MIC. Differences in the level of aomhation with free
triclosan (or non3-lactamase-mediated activation) could not be ruled outasise
for this behaviour, and it highlights the importance of @mination studies when

assessing the efficacy of a pro-drug treatment strategy.

6.3.2 Sensitivity Analyses

The g-lactamase enzyme catalysed therapeutic activation (E@Té-drug strat-
egy employed by NB2001 and NB2030 means that their efficasiyasgly depen-
dent on thes-lactamase status of the bacterial cells being treateds djyproach
is designed to be particularly effective agaipskactamase over-expressing cells.

This dependence on thelactamase status of the cells is illustrated in Figure 6.9
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Figure 6.9: Predicted effect pf-lactamase production rate on minimum inhibitory
concentrations (MIC) of NB2001 and NB2030 versus simulateldctamase-
producingS. aureudacteria. Free triclosan (which is unaffectedactamase)
is included as a control. Drug compounds were added aftdr@iB of incubation,
during the exponential phase of bacterial growth.

where the simulated log MIC of each pro-drug is graphed agaimange of differ-
ent g-lactamase production rate values. There is a significagdithe correlation
between thej-lactamase production rate and the MICs in the results (NB20
r=—0.993, p=0.007; NB2030: r=0.959, p=0.041). This is to be expected given
the mechanism of activation i&lactamase-dependent.

Variation between the graphs of NB2001 and NB2030 are duéffierehces
in the kinetic parameters of the enzymatic cleavage ofstfectam ring. The cat-
alytic efficiency k..:/K,;) of Staphylococcal Type A-lactamase with NB2030 is
approximately ten-fold higher than with NB2001. As a resihieé MIC for NB2030
is lower than NB2001 at any givertlactamase production rate. However, at very
high production rates (e.g>>10"° uM s~!agent!) the MIC of NB2030 begins

to be limited by the efficacy of the activated triclosan, ane graphs of the two
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Figure 6.10: The user-defined diffusion coefficient for Rdist law of diffusion
was varied over the range 0.001 - 0.2 to assess the relatpairof diffusion rate on
the minimum inhibitory concentration (MICs) of NB2001, N&2 and triclosan
againsti-lactamase-producing. aureudpacteria. Drug compounds added after 3.3
hours of incubation, during the exponential phase of badtgrowth.

pro-drugs start to converge.

Another important factor that can influence pro-drug attiid the diffusion rate
in the environment. As discussed above, for the hypotheateaicillin-based pro-
drug, this can have an important impact on pro-drug efficgure 6.10 shows the
results of investigations on the effect it has on the MICshef pro-drugs NB2001
and NB2030. For free triclosan, there is a significant nggatorrelation between
the MIC and the diffusion coefficient of Fick’s first law of @lision (r=—0.989,
p=0.011). This is probably due to faster transport of aatibivia diffusion pro-
cesses to the interior of the colony resulting in better defiigacy, or lower MIC
(see Fig. 6.4B).

However, when triclosan is administered in pro-drug formB2801 and

NB2030), there is no longer a significant negative corretatietween the diffu-
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Figure 6.11: Predicted effect of varying the half-life ore tminimum inhibitory
concentrations (MICs) of NB2001 and NB2030, and triclosgaiast simulateg-
lactamase-producin§. aureushacteria in culture. Drug compounds were added
after 3.3 hours of incubation, during the exponential pledd®cterial growth.

sion coefficient and the MIC (NB2001: r=0.829, p=0.171; NB@0Or=-0.860,
p=0.140). In fact, for NB2001 there is evidence of a positiwgelation, although

it is not statistically significant. This may be because tieased diffusion rate
results in dispersal of the activated antimicrobial ageoif the vicinity of the
bacterial cells (see Fig. 6.4A). The rate/®factamase-mediated activation of the
pro-drugs in the vicinity of the colony could also be a limgifactor in this case.
This is particularly evident with NB2001 because of the lowatalytic efficiency
(compared to NB2030) of thé-lactamase enzyme at cleaving it.

Finally, the impact of the half-life on the efficacy of the plaugs was also
investigated. For free triclosan, there is a significantatigg correlation between
the half-life and the MIC of the drug (r=0.961, p=0.039). There is also a hegative
correlation between the half-lives of NB2001 and NB2030 #asr MICs but it is
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not statistically significant over the range of values @<t¢B2001: r=0.914,
p=0.086; NB2030: r=-0.945, p=0.055). When the half-life of the pro-drug is
below a certain threshold (in this case, approximately B)Qe pro-drug degrades
before the concentration of activated antimicrobial agemt reach the minimum
threshold for inhibition of growth (see Fig. 6.3). This thineld is influenced by the
time it takes for induction ofi-lactamase expression in the bacterial cells to take

place.

6.4 Conclusions

The results presented here provide preliminary examinaid the pro-drug deliv-
ery system and how it influences the dynamics of bacterialtfrand interactions
with drug molecules. These initial investigations showt th& enzyme-catalysed
therapeutic activation (ECTA) pro-drug strategy représanpromising alternative
approach for treating-lactamase expressing resistant pathogens. There daretist
characteristics about the pro-drug system which diststgitifrom the traditional
antibiotic approach, and it is worthwhile to explore thedéekences in order to
compare the strengths and weaknesses of each approach.

The dynamics of this system differ from the traditiogalactam treatment strat-
egy and therefore could result in contrasting selectivegaree on the bacteria (i.e.
selection against-lactamase-producing strains of bacteria). However, a goe-
oretical understanding of the complex interactions ingdlmust be developed in
order to prevent rapid development of resistance to thesdypes of drugs as has
occurred with many traditional antibiotics. This will recgistudies at various lev-
els, from high level population-based mathematical saiidow-level agent-based

models. However, as is the case for other antibiotics, thesiels require detailed
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biological information about the cellular and moleculamgmnents of the system

in order to correctly address the questions of how to optrfor treatment success.
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Table 6.2: Inputted parameter values for simulations ofgia interactions with
(-lactamase-producin®. aureusbacteria in Micro-Gen model.b.u.=biomass
units;loop=program loop {2 s in real time)

Type of Entity Parameters (units) Input Value
Patch areal.u) 20000
Environment Patch nutrient level(u) 80000
Diffusion co-efficient 0.1
Generation timerin) 29
Threshold for divisionlf.u.) 10000
Nutrient intake .u. loop™?) 10.0
Survival cost .u. loop™?!) 0.2
. Stationary phase relative metabolic rate 0.2
Bacterial Cell Lag phase lengtmgin) 63
(-lactamase production rateil s=1):
Type A 3.28x107
Type C 1.62x107
(-lactamase production codt.(1) 0.1
Molecular weight Da) 30000
Half-life () 53640
Keat (871):
Penicillin-based pro-drug 171.0
B-lactamase NB2001 1.01
NB2030 30.8
Kar (uM):
Penicillin G-based pro-drug 51.1
NB2001 6.3
NB2030 20.0
Half-life ()
Hypothetical compound 2520
Triclosan-equivalent 3600
Activated Pro-Drugs o (571):
Hypothetical compound 0.185
Triclosan-equivalent 10.0
Ka (uM):
Hypothetical compound 1540
Triclosan-equivalent 10.0
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CHAPTER Y

CONCLUSIONS ANDFUTURE WORK

7.1 Summary and Conclusions

An agent-based model of bacteria-antibiotic interactimasbeen developed, which
incorporates the antibiotic resistance mechanisms of MR&#eria. The model,
called the Micro-Gen Bacterial Simulator, uses informatanout the cell biology
of bacteria to produce global information about populagoowth in different envi-
ronmental conditions (Chap. 3). It facilitates a detailgstesms-level investigation
of the dynamics involved in bacteria-antibiotic interacs and a means to relate
this information to traditional high-level properties suas the Minimum Inhibitory
Concentration (MIC) of an antibiotic (Chaps. 4 - 5).

The individual bacteria are represented by software aglatsstore physical
traits of the cells as well as behavioural rules associatddtihem. The culture en-
vironment is represented by a discrete, two-dimensiondlgmmtaining diffusible
elements such as nutrients, enzymes and antibiotics. Méemois also designed
to take advantage of high performance computing resourgaesduding an im-
plementation of the Message Passing Interface (MPI) foninghin parallel on

multiple computers.
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The model is highly adaptable and capable of being scaledoup lfightweight
portable devices to high performance parallel computinghimes. The user can
input parameters applicable to different species of bectsr modifying low-level
cellular attributes such as size, growth rate, motility é¢dowever, as shown here,
it can also be adapted to incorporate detailed represensadif specific antibiotic-
resistance strategies such as those employed by MRSA.

The two main resistance strategies agajfi$actam antibiotics employed by
MRSA were incorporated into the modeB-lactamase enzymes which hydrolyt-
ically cleave antibiotic molecules, and penicillin-bindi proteins (PBP2a) with
reduced binding affinities for antibiotics. In order to gtignthe efficacy of the
antibiotics at inhibiting cell division, kinetic paramesedescribing the reactions
between antibiotics and PBP2a in the cell @hthctamase cleavage of antibiotics
were derived from biological literature.

Tests with commom-lactam antibiotics indicate that the model can be used to
generate quantitatively accurate predictions of dosage@inements for antibiotics
against different strains of MRSA from basic cellular anddbiemical information.
Furthermore, by varying key parameters in the model thdivelampact of differ-
ent kinetic parameters associated with the two resistarmhamisms t@-lactam
antibiotics were investigated. The model has also been tesieslestigate the sys-
tem dynamics taking place within a population of bacterig.vBrying properties
such as the diffusion rate, population sizdactamase production rate or antibiotic
half-life, the effects of these parameters on treatmempinese could be examined.

Traditional methods of measuring antibiotic efficacy sushiree Minimum In-
hibitory Concentration are insufficient for understandimggcomplex dynamics that
lead to the rapid development and spread of antibiotic tesie within bacterial

populations. However, the ability to investigate the lielaghip between individ-
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ual molecular components of the system and the overallnteatt outcome can

lead to a better understanding of how to optimize antibipiddormance and pre-
dict treatment outcome. The agent-based modelling apbrogaresents another
computational tool set, in addition to existing pharmaoekic-pharmacodynamic
mathematical models, for assessing the efficacy of novel dompounds. Micro-

Gen can also be used to indicate evolutionary pathways a-eleds that may exist
for bacteria in response to antibiotic exposure.

The model can also be extended to represent new classesmicaabial agents
and strategies for treating resistant bacteria. For exanipé model has been used
to examine the system dynamics involved in the enzymeysdltherapeutic acti-
vation (ECTA) pro-drug strategy for treating antibiotisigant bacteria (Chap. 6).
This involves the application of a substrate-like pro-dmiglecule containing the
(G-lactam ring structure, which undergoes therapeutic atitim catalysed byj-
lactamase enzymes to achieve selective release of a ct@atkmicrobial agent.
The model was used to examine the dynamics of this systentig@tign and assess

its therapeutic potential from a theoretical standpoint.

7.2 Future Work

Micro-Gen can be used to test hypothetical scenarios byingitihe parameters of
existing antibiotics to explore how potential novel compds might act. It is a
useful tool for the rapid screening of drug compounds againkverse range db.
aureusstrains in simulated culture conditions. Future work cal#b include using
the model to investigate the system dynamics of combinatierapy with multiple
classes of antibiotic. The agent-based approach is alsabseifor modelling the

evolution of antibiotic resistance over time by incorporgtgenetic components
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into the bacterial agents. This would allow both the tembamna spatial dynamics
of antibiotic resistance development to be examined.

Another important development of the model would be to edptie environ-
ment to represent three-dimensional space in order to moale complex spatially
structured microbial communities such as biofilms. Biofilns complex aggrega-
tions of microbial cells that are characterised by theirggendiversity, structural
heterogeneity and complex cellular interactions. In thetsectured communities,
there can be highly heterogeneous localised niches whemhgmistry varies dra-
matically over small distances. The agent-based appr@ahpowerful tool for
modelling interactions within a heterogeneous environnsamce the parameters
for the simulation are defined at the individual level.

Bacteria communicate with one another within biofilms in agaess known as
guorum sensing, using chemical signalling molecules dallgto-inducers. This
cell-to-cell communication allows a population of bacteto coordinate the gene
expression, and therefore the behaviour, of the group. Wheteria exist in spa-
tially structured communities, the cell numbers can readficsently high numbers
to induce a quorum sensing response. In the case afireusacteria, the change
from a commensal, non-invasive state to a pathogenic statediated by signalling
peptides that are part of the quorum sensing response.

The concentration of signals in a community is influenced Hey pproduction
rate and half-life of the signal molecule, the diffusion pedies of the signal and
external hydrodynamic conditions. Micro-Gen already hesgesns to model these
properties with respect to free molecules (e.g. nutriesigymes, antibiotics) in
the environment. A diffusion algorithm implementing FislEirst Law of diffusion
dictates the movement of molecules in the simulated enmieont. This will need to

be adapted and expanded to represent the more complex dymaithiin the highly
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structured organisation of a biofilm community. This coudcdzhieved by incorpo-
rating a more complex hydrodynamics algorithm to repreti@nflow of nutrients
and other molecules within the colony. The model represamtbust foundation
on which to build more complex models of real-world micrdl@@ammunities such

as these.
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