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Abstract

In recent years there has been a rapid growth in the understanding of the basic

cellular processes of individual bacterial cells through advances in molecular

biological research. However, this has introduced a demandto understand how the

interactions between the individual system components contribute to the overall

population dynamics. A useful theoretical approach for relating information at the

individual cellular/molecular level with emergent population characteristics is the

agent-based (or individual-based) modelling approach. The agent-based modelling

approach involves assigning pre-defined rules and parameters to each individual

component (e.g. the bacterial cell) of the population. Therefore, the emergent

behaviour of the population as a whole can be examined without the need for

population-level laws.

An agent-based model of bacterial population growth, called the Micro-Gen

Bacterial Simulator, has been developed to provide a theoretical framework for

investigating the interactions between antibiotics and bacterial cells in culture.

Parameters are inputted at the cellular level in order to replicate the life cycle of

bacteria grown in batch culture. The individual bacteria ofa colony are represented

by software agents, which store the physical traits such as energy state or antibiotic

damage and the behavioural rules of the bacteria. The interactions of antibiotic

molecules with the bacterial cells and extra-cellular enzymes (e.g.β-lactamases)

are governed by defined kinetic rules derived from the biological literature.



The Minimum Inhibitory Concentration (MIC) was calculatedfrom the model

for a number of common antibiotics, against methicillin-resistant S. aureus

(MRSA), and compared with real-world results. The predicted values from these

initial tests matched closely those recorded fromin vitro experimental studies of

MRSA in the literature. The model was also used to examine thesystem dynamics

of the enzyme-catalysed therapeutic activation (ECTA) pro-drug delivery system,

a novel approach for achievingβ-lactamase-mediated selective release of antimi-

crobial agents. It is thought that this strategy might be a promising approach for

treatingβ-lactamase over-expressing strains of bacteria that are resistant to tradi-

tional β-lactam antibiotics. The model provides a suitable theoretical framework

for comparing and contrasting different drug treatment strategies from a system’s

perspective in order to assess their potential efficacy.
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GLOSSARY

β-lactam Antibiotics Common class of antibiotics, characterised by

the presence of aβ-lactam ring structure which

facilitates binding to the penicillin-binding pro-

teins in cell membrane of bacteria and disrupting

cell wall synthesis. Examples include penicillin

G, ampicillin and cephalothin, 15

β-lactamase Enzyme produced by bacterial cells which de-

gradesβ-lactam antibiotic molecules by cleaving

theirβ-lactam ring structure., 31

Staphylococcus aureus Non-motile species of bacteria that generally ex-

ist as part of the normal flora found on nasal pas-

sages, skin and mucous membranes in humans.

Have the potential to cause a variety of infec-

tions from superficial skin lesions such as boils,

to more serious conditions such as pneumonia,

15
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Agent-Based Model Computational modelling approach which simu-

lates the actions and interactions of autonomous

individuals/agents. Rules and parameters are de-

fined at the individual-level rather than for the

population as a whole., 17

Antibiotic Resistance Refers to the ability of a microorganism to re-

sist the effects of an antibiotic. Examples of

mechanisms of antibiotic resistance include the

synthesis of antibiotic-degrading enzymes (e.g.

β-lactamase), and modifications to drug targets

such as the penicillin-binding proteins (PBPs) in

bacterial cell membranes, 33

BAIT Bacteria-Antibiotic Interaction Tool - precur-

sor to Micro-Gen, which implemented a simple

model of bacterial growth and interactions with

antibiotic molecules in discrete, 2D environment,

30

Chemotaxis The movement/orientation of a cell/organism ei-

ther towards (positive) or away from (negative) a

chemical stimulus, along a chemical concentra-

tion gradient, 48
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MIC Minimum Inhibitory Concentration is the mini-

mum concentration of an antibiotic that results in

inhibition of bacterial growthin vitro for a spec-

ified period of time, 38

Micro-Gen Bacterial Simulator Agent-based model of bacteria-antibiotic interac-

tions in vitro. Uses basic cellular and kinetic pa-

rameters to explore the emergent population dy-

namics of antibiotic resistance, 7

Model A mathematical or computational model is a pur-

poseful representation of an entity or system

whose purpose is to capture the essence of a

problem and explore different solutions of it, 20

MRSA Methicillin-ResistantS. aureus- multi-drug re-

sistant form ofS. aureuswhich was first isolated

in 1961. Resistance conferred by expression of

penicillin-binding protein 2a which has reduced

binding toβ-lactam antibiotics, 32

Pro-drug A drug that is administered in a pharmacologi-

cally inactive (or significantly less active) form

and is then metabolisedin vivo into an active

metabolite., 111
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CHAPTER 1

INTRODUCTION

1.1 Motivation

The emergence of multi-drug resistance inStaphylococcus aureusbacteria has be-

come a major healthcare problem in recent years. Prior to theintroduction of antibi-

otics, patients withS. aureusbacteraemia had a mortality rate of over 80% [9]. This

situation improved dramatically when the firstβ-lactam antibiotic, penicillin, was

introduced into clinical use during the early 1940s [10]. However, today greater

than 95% of allS. aureusisolates possess resistance to penicillin, and 40-60% of

clinical isolates in the United States of America and the United Kingdom express

methicillin resistance (MRSA) [11, 12].

There has been a rapid increase in information about the basic cellular processes

that lead to antibiotic resistance due to advances in cell and molecular biology. This

development has allowed a finer-grained approach to investigating the spread of re-

sistance in populations of bacteria. However, the overall population response to

antibiotic treatment is often a function of a diverse range of interacting compo-

nents. In order to develop strategies to minimize the spreadof antibiotic resistance,

a sound theoretical understanding of the systems of interactions taking place must

15



be developed. For example, there has been a rapid development in the field of phar-

macokinetic/pharmacodynamic studies in the last few decades that has led to a bet-

ter understanding of the complex dynamics that contribute to the bacterial response

to drug treatment [13]

There are a number of different approaches that have been taken to analyse

how populations of bacteria grow and interact. The most common approach is to

develop mathematical, or state variable, models that describe the population as a

whole. This can give important insights into parameters at the population-level

that influence the development of the colony [14]. These approaches are appro-

priate for developing an integrated view of colony development and benefit from

the fact that they are often less parameter-rich than other approaches. However,

the use of global parameters requires the implicit assumption that the population

is in a homogeneous, mixed environment. However, in nature,bacteria often form

highly heterogenous colonies where there can be significantlocalised variations in

the chemical environment such as ion concentrations, pH, temperature and nutrient

availability [15].

The approach taken here is to implement an agent-based (or individual-based)

model where the individual bacterial cells represent the fundamental units of the

simulation. This bottom-up approach means that parametersare defined for the

bacterial cells rather than for the population as a whole. The properties of a colony

thus emerge from the set of interactions of a population of heterogeneous bacte-

rial agents. Therefore, the inherent heterogeneity that exists in a bacterial colony

is explicitly modelled. Some of the drawbacks of this approach include the fact

that it can sometimes require more parameters than a state variable approach since

the individual entities are explicitly modelled and it alsomay become too open to

empirical knowledge [13]. However, by using appropriate aggregation of parame-

16



ters in order to simplify the model, and cognisant of its limitations, the agent-based

approach can be used as a powerful tool for tracing back system behaviour to that

of its individual components.

A model has been developed called Micro-Gen that implementsthe agent-based

approach to simulate the life cycle of bacteria grown in culture and their interac-

tions with antibiotic molecules [16, 17, 18]. This model canbe adapted to represent

different species and strains of bacteria using basic cellular information. For this

study, simulations were carried out using parameters applicable to MRSA. Micro-

Gen has been designed to incorporate the two main antibioticresistance strategies

characteristic of MRSA. It is possible to produce a quantitative model of the inter-

actions between antibiotics and MRSA bacteria because the kinetic rules for these

reactions have been well characterized experimentally [19, 20]. The ability to sim-

ulate the individual molecular interactions of antibioticmolecules and bacteria, and

scale this up to large population sizes using the agent-based approach, is a powerful

tool for exploring the emergent dynamics that contribute toantibiotic resistance in

bacterial populations.

1.2 Objectives

The objective of the research is to develop an agent-based model of MRSA

that incorporates the main antibiotic resistance mechanisms found used by these

pathogenic bacteria. The model will be used to study the effects of changes at the

molecular level on the overall efficacy of existing antibiotics.

Our key objectives for attaining this goal were as follows:

1. Develop a robust, adaptable model of bacterial cellular growth in culture

which replicates the standard life cycle of bacteria. Validate the model for

17



the clinically important gram-positive bacterial speciesS. aureus.

2. Expand the model to include a detailed representation of the interactions be-

tween antibiotics and MRSA that incorporates the principalkinetic rules gov-

erning these interactions.

3. Use the model to examine the relationship between low-level cellu-

lar/biochemical properties of individual bacteria/antibiotics and high-level

treatment response at the population level. Assess the impact of the differ-

ent kinetic parameters on antibiotic treatment outcome.

4. Explore potential, novel drug delivery systems such as the pro-drug technol-

ogy and predict their efficacy using theoretical studies.

1.3 Outline of Thesis

The second chapter of the thesis gives an overview of existing approaches taken to

model bacterial growth and development, and compares the agent-based approach

to more traditional population-based mathematical models. Following this, a more

detailed overview of MRSA will be given and the antibiotic resistance strategies that

have been identified in it. The next chapter contains a detailed description of the

agent-based model Micro-Gen, which was developed to simulate the interactions of

anti-microbial drugs with bacteria in culture.

In chapters four and five, a detailed analysis of the system dynamics involved

in the interactions between anti-microbial drugs and MRSA is carried out. The ef-

fects of key cellular parameters associated with antibiotic-resistance mechanisms

on treatment outcome are also explored. The cellular and molecular parameters for

this model were derived from the biological literature for three different strains of

18



MRSA, and the model was used to predict the Minimum Inhibitory Concentration

(MIC, which is a key clinical measure of antibiotic efficacy)of each antibiotic ver-

sus the three strains. When the predicted MICs from the modelwere compared with

experimentally derived MICs for MRSA, they were found to be in close quantitative

agreement.

Chapter six details simulations to explore a novel drug delivery system called

the enzyme-catalysed therapeutic activation (ECTA) pro-drug delivery system and

illustrate the value of Micro-Gen in supporting drug discovery efforts. The final

sections of the thesis include the conclusions from the present research along with

future directions that may be taken, followed by a bibliography of relevant papers

in the field. Full copies of publications that have arisen outof the current research

are attached at the end of the thesis.
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CHAPTER 2

L ITERATURE REVIEW

2.1 Computational Modelling of Bacteria

Computational systems biology is a swiftly developing fieldin biological simula-

tion that attempts to model complex biological processes asintegrated systems of

interacting components, using data from genomic, proteomic, metabolomic and cel-

lular studies [21]. This often involves collecting large datasets of experimental data

to develop predictive computational models which are then assessed and compared

with newly derived experimental data in order to further improve the model and

give insights into the biological processes being observed.

The power of the computational modelling approaches is not so much in their

ability to make predictions (some degree of experimental validation will always

be needed to confirm any predictions) but in their ability to give new insights into

the underlying mechanistic basis for the observed biological phenomena. A com-

putational model may be defined as a ‘purposeful representation’ of an entity or

system whose “purpose is to capture the essence of a problem and explore differ-

ent solutions of it” [22]. The most important role of a model is therefore to aid in

our understanding of a particular process. From this perspective, all the different

20



modelling approaches share the same principal aim, though they may differ in the

assumptions and tools that are used.

There have been many different modelling approaches developed in computa-

tional systems biology that encompass many different temporal and spatial scales.

Complex biological processes can range from microscopic sub-cellular processes

such as cell metabolic pathways to large-scale ecological questions involving the

development of populations of organisms over long periods of time. For this rea-

son, many different modelling approaches, with differing granularity in their tem-

poral/spatial scales, have been developed to approach these problems. However,

many of them are adaptations of particular modelling strategies that use common

techniques such as ordinary differential equations or agent-based modelling tech-

niques to address their specific modelling questions.

2.1.1 Mathematical Approaches

A number of the most common simulation techniques used include mathematical

approaches such as ordinary differential equations (ODEs)and partial differential

equations (PDEs). ODE models are probably the most common modelling ap-

proach used in systems biology since they are computationally efficient and math-

ematically robust, and can be used to develop an integrated view of biological sys-

tems. Basic ordinary differential equation methods are limited in their ability to

model situations such as discontinuous state-changes, stochasticity, diffusion, com-

partmentalization and cell migration [23]. However, in order to address some of

these limitations extensions to the basic ODE methods have been developed such

as stochastic ODEs and compartmentalised ODE models. BasicODEs are lim-

ited to temporal modelling, but partial differential equations (PDEs) can be used to

21



model processes that have spatial as well temporal dependencies.

Mathematical population models are commonly used to describe the growth

and development of a bacterial colony as a unit, using globalparameters or state

variables [24, 14]. These “top-down” approaches have the advantage that they are

computationally efficient and less parameter-rich than more low-level approaches.

However, an important limitation of the state variable approach is that it does not

allow the user to trace back the system behaviour to the behaviour of the individual

agents. For example, this approach cannot explain the underlying factors that lead

to the population exhibiting a particular growth rate or carrying capacity [22]. How-

ever, they are important to provide an appropriate integrated view of the population

behaviour.

2.1.2 Petri Nets

Other techniques used in computational systems biology include Petri nets, cellular

automata, and finally, the approach used in this project, theagent-based approach.

Petri nets are an alternative approach to modelling time-dependent processes [23].

Petri nets consist of two types of node: a ‘place’ which can beused to represent,

for example, a particular species of molecule, and a ‘transition’ node, which might

represent reactions (Fig. 2.1). Petri nets are a discrete system which is driven by

implicit time increments where a transition ‘fires’ when themarkings (or tokens)

at all of its ‘input’ places exceed the ‘weights’ on its inputarcs, producing product

on its output arcs. This correlates with a reaction occurring when there are enough

reactant molecules, resulting in the generation of reaction products.

The Petri nets approach has been expanded to address more complex mod-

elling questions involving either discrete or continuous values (Hybrid Petri nets

22



P1

P2

P3

T1
P4

P5

Input

Arcs
Output

Arcs

Token

Figure 2.1: An example of a simple Petri net, consisting of input places (P1-P3),
output places (P4-P5), transition (T1), and arcs (input andoutput). Places can con-
tain tokens, and when there are enough tokens in the input places the transition
‘fires’, removing tokens from its input places and adding them to the output places.

and Functional Hybrid Petri nets). Coloured Petri nets havealso been developed

that allow mathematical relationships to be incorporated in transitions to govern

the rate of firing. Petri nets can also be used to build compartmental models by

having different ‘places’ to represent the same chemical species in different com-

partments. For this reason, the Petri nets formalism represents a powerful tool for

qualitative and quantitative modelling of many biologicalprocesses [25]. However,

this approach is not as amenable to modelling spatially dependent processes such

as diffusion, growth or cell chemotaxis.

2.1.3 Cellular Automata

The Cellular Automata (CA) approach to modelling biological systems is a power-

ful tool for modelling both temporal and spatiotemporal processes. In CA models

the environment of the models is represented by a discrete lattice/grid where the

23



states of the components evolve synschronously in discretetime steps according to

a set of rules [23]. The CA simulation Conways Game of Life wasone of the first

computer applications in biology [26]. This model consisted of randomly placed

cells on a square lattice and simulated birth, death and interactions according to

pairwise interaction rules which used Boolean logic conditions.

In basic CA models, the objects of the model do not strictly move, but rather

their properties or attributes are updated each time step, allowing movement to be

represented indirectly. A variation on this technique is the dynamic cellular au-

tomata (DCA) approach, which allows for the explicit modelling of movement and

is conceptually similar to the agent-based modelling approach [27]. Cellular au-

tomata approaches are particularly amenable to modelling stochastic spatial and

temporal processes such as transport processes, cell migration, diffusion or viral in-

fection. They can also be useful for visualising processes such as chemotaxis, drug

diffusion or pattern formation.

The robustness and adaptability of the cellular automata modelling approach has

made it amenable to simulating a wide range of biological process, from enzyme-

kinetics and hydrodynamics studies to the progression of HIV/AIDS [28, 29]. Cel-

lular automata theory has also been used successfully to explain pattern formation

in bacterial colonies [30].

2.1.4 Agent-Based Approach

An alternative approach to modelling bacterial growth and development is the

agent-based (or individual-based) modelling approach [31, 32]. The distinguishing

characteristic of the agent-based approach is that the properties of the individual

cells, rather than the colony as a whole, are modelled. This “bottom-up” approach
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allows a finer-grained analysis, connecting local changes at the cellular level to the

overall patterns of population growth. The agent-based approach shares some of the

strengths of the cellular automata modelling approach, in that it is able to explicitly

model both temporal and spatiotemporal processes. For thisreason, it is particularly

amenable to modelling processes such as chemotaxis, diffusion and pattern forma-

tion in bacterial colonies. However, it represents an even finer grained approach in

that the individual biological entities being modelled areexplicitly represented by

unique software objects.

It must be noted that the agent-based approach and higher-level mathematical

approaches are not mutually exclusive but rather complement each other in studies

of population dynamics. The latter approach allows a general conceptual frame-

work to be developed for a population which can lead to theories at the systems

level. The agent-based approach meanwhile allows important features of the indi-

viduals to be taken into account and related to the overall system’s properties. The

agent-based approach can suffer from being more computationally intensive and de-

pendent on empirical data than high-level mathematical approaches such as ODEs

because each individual of a population is explicitly modelled. However, in cases

where the population being modelled expresses a high degreeof heterogeneity, both

spatially and between individuals, the agent-based approach represents a powerful

tool for exploring how this heterogeneity contributes to the system dynamics.

The next section contains an overview of existing agent-based models that have

been used to explore bacterial population development. Following this, the Micro-

Gen Bacterial Simulator which was developed over the courseof this Ph.D project

is introduced.
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2.2 Examples of Agent-Based Models of Bacteria

2.2.1 BacSim Model

One of the most significant examples of an agent-based (or individual-based) mod-

elling approach to modelling microbial colonies is the ‘BacSim’ simulator [32]. It

is an individual-based model that uses the known physiologyof individual cells

to produce a quantitative model of microbial colony development. When it was

introduced, it differed from previous models of microbial colony growth which de-

pended on mathematical and cellular automaton approaches to address this problem

[33, 24, 30].

BacSim had an advantage over the previous approaches in thatit explicitly al-

lowed for spatial differences in the environment and between the individual bacte-

rial cells. It demonstrated the power of this modelling technique for exploring the

heterogeneous population dynamics occurring within a microbial colony. For ex-

ample, it was used to explore the effects of growth asynchrony and random variation

of cell parameters on population development [32].

BacSim was further developed into a two-dimensional multi-substrate, multi-

species model of microbial biofilms [34]. Biofilms are multi-species communities

of surface-attached micro-organisms characterised by their genetic diversity, struc-

tural heterogeneity and complex cellular interactions. Although the model allowed

a continuous 3D space for bacterial movement, the extra dimension for bacterial

movement was restricted to about two cell diameters and the substrate diffusion-

reaction was restricted to 2D space, so therefore it was described as essentially a

2D model.

The model was compared to an established biomass-based model (BbM) of

biofilm growth where the spreading of biomass was dictated bycellular automata
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rules [35]. Biomass-based models are spatially structuredpopulation models where

the interactions of the biomass units lead to the emergent development of the

community. The comparison between the individual-based and biomass-based ap-

proaches showed qualitative agreement in terms of the overall growth of the simu-

lated biofilms. However, it must be noted that the study did not take into account

the different phenotypic characteristics of cells in biofilms or the complex three-

dimensional structure of biofilms.

BacSim has continued to be developed since then and used to address questions

such as the migration ofSalmonella enteridisin hen’s eggs, and the population

dynamics during the lag phase of bacterial growth [36, 37, 38]. It was used as a

basis for studying cell division at the individual-level inorder to understand better

the mechanistic principles underlying the lag phase. Thesedifferent applications

of the agent-based modelling paradigm illustrate the powerof this approach for

investigating many factors of microbial population development and connecting

them with information obtained at the cellular level.

2.2.2 INDISIM Model

Another important model developed to investigate microbial population dynamics

using an agent-based approach is INDISM, which stands for Individual Discrete

Simulations [31]. INDISIM differs from BacSim in that whereas the latter treated

bacterial cells in continuous space (with discrete time) INDISIM is discrete in both

space and time. However, they both share in common the fact that they represent

bacterial colonies with respect to their individual cells allowing for spatial hetero-

geneity in the environment and individual variability between the different cells.

INDISIM has been used to study biomass distributions, growth rates and metabolic
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oscillations in simulated batch culture bacterial colonies [31].

The environment of INDISIM is represented as a discrete gridwith each lattice

point containing variables storing the concentrations of different types of particles,

for example nutrients, reaction products or residual products. The diffusion of par-

ticles through the environment is calculated using a discretized implementation of

Fick’s First Law of diffusion. Like BacSim, individual rules are applied to the bac-

terial cells for motion, uptake, metabolism, reproductionand viability.

Simulations with INIDISIM have shown that it can be used to reproduce quali-

tatively the growth patterns ofBacillus subtilisbacteria on an agar plate [39]. It was

also used in studies of the lag phase, where it was demonstrated that the evolution

of the mean mass and biomass distribution of a colony was a determining factor for

entering the exponential phase of bacterial growth and the rate of enzyme synthesis

also had a direct effect on lag duration [40, 41].

Finally, an extended version of INDISIM, INDISIM-SOM has been applied in

studies of the dynamics of soil organic matter (SOM) and the evolution of carbon

and nitrogen sources in the soil and their effect on microbial growth [42]. The agent-

based approach is particularly suitable for modelling an environment such as soil

since it is a heterogeneous, discontinuous environment with discrete microhabitats

where the chemical and biological properties vary greatly over small distances.

2.2.3 Other Agent-Based Bacterial Models

A number of different agent-based simulators were developed in the lab of R. Paton

to approach the problem of modelling bacterial cells. Thesewere built on previous

work using the agent-based approach to model ecological systems involving learn-

ing herbivore animals in a world populated by plants [43]. The COSMIC system
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was an agent-based model of evolution in bacterial cells involving four levels of

interaction in the system (Environment - Individual Cells -Gene Products - Genes)

[44, 45]. The BacSim model, described above, was used for representing cell

growth and division. COSMIC introduced an extra level of complexity by incor-

porating a genetic component into the bacterial cells, and aparallel implementation

was created to take advantage of parallel computing resources.

COSMIC incorporated a gene transcription network that outputted a ‘flagella

activation protein’ which was a generic gene product responsible for bacterial

movement. This gene product triggered motility and chemotaxis towards areas

of higher nutrient concentration, creating a positive feedback loop for the gene

transcription network. The goal of COSMIC was to evolve a genome that max-

imised cell growth as a result of this feedback loop. Although COSMIC repre-

sented a somewhat limited implementation of a genetic component, it demonstrated

the strength of the agent-based modelling approach for investigating questions such

as the evolution of bacterial agents over time to produce different phenotypes that

affect cell survival.

A simpler model of bacterial growth, which did not include a gene component,

was also developed in the same laboratory, called RUBAM [44]. The bacterial

agents incorporated a Learning Classifier System (LCS) based on fuzzy logic for

implementing chemotaxis. The LCS was the decision making component of a feed-

back loop that included the environment, sensors to detect the environment and

directed swimming of the bacterial cell. This resulted in the evolution of survival

strategies from an initial pool of bacterial agents initialized with random rules. With

this approach it took a long time to find good solutions, but the bacteria would even-

tually evolve to a point where they could adapt to prevailingconditions and respond

to environmental stimuli.
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The most recent project from the lab of R. Paton, COSMIC-Rules, attempts to

combine the experiences from COSMIC and RUBAM to develop an agent-based

model consisting of three levels: the genome, bacterial cell, and environment [43].

Each individual bacterium has a unique location, size, state of cell division and

genome. The model expands on the genetic component of the original COSMIC

model to incorporate representations of plasmids and bacteriophages which add to

the complexity of the population dynamics. This means that horizontal transfer of

genetic information within a population can occur as well asvertical transmission

between generations.

The agent-based modelling approach has also been applied tounderstand the

mechanisms that affect microcolony and biofilm formation inbacteria by L.R. John-

son in the University of California [46]. A model was developed there to infer how

the patterns observed in the early stages of biofilm formation are affected by the be-

haviour of the individual bacterial cells. The formation ofgroups was modelled as a

function of the doubling rates, stopping rates and the strength of the interactions be-

tween the cells. This could be used to make predictions abouthow the inter-cellular

interactions affect the mean colony size and maximum colonysize for example.

2.2.4 BAIT & Micro-Gen Bacterial Simulator

The ‘Micro-Gen Bacterial Simulator’ was developed to modelthe growth and in-

teractions of bacterial cells with antibioticsin vitro using the agent-based approach

[17, 18]. It was built on existing work in the laboratory to develop an agent-based

model of bacterial growth in culture called the Bacteria-Antibiotic Interaction Tool

(BAIT) [16]. BAIT incorporated a simple model of bacterial growth and inter-

actions with antibiotic molecules in a discrete two-dimensional grid environment
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using the Java programming language. Mathieu Joubert, as part of an internship

project in the laboratory, developed a C++ version of BAIT which formed the ba-

sis for the Micro-Gen project. Micro-Gen represents a significant expansion and

re-design of the original BAIT tool, in order to build a more realistic representation

of bacterial growth and development in culture and their kinetic interactions with

antibiotics.

The theory of autonomous agents is a useful approach for the modelling of

bacterial cell colonies as it allows large-scale population models to be derived from

simple rules dictating the growth and interactions of the individual bacterial cells

of the population. The Micro-Gen Bacterial Simulator uses information about the

cell biology of bacteria to produce global information about population growth in

different environmental conditions.

An agent-based approach was chosen over a simpler mass action model in or-

der to explicitly model the heterogeneity in environmentalconditions, for example

between the interior and exterior of the colony, and betweenindividual bacterial

cells. In complex microbial communities, such as biofilms, there can be highly

heterogeneous localised niches where the chemistry variesdramatically over small

distances.

A key component of the model is the ability to quantitativelymodel antibiotic

molecules and their interactions with the bacterial cells.These interactions are gov-

erned by defined kinetic parameters specific to the type of antibiotic and bacterial

strain being modelled. This allows a quantitative model of antibiotic interactions

with bacteria to be built up and their pharmacokinetic properties to be investigated.

The model also incorporates two important antibiotic resistance mechanisms

employed by bacterial cells against antimicrobial agents which form the cornerstone

of the antibiotic arsenal: special enzymes released by bacteria, calledβ-lactamases,
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which degrade the antibiotic molecules, and reduced binding affinities between the

antibiotics and receptors in the bacterial cells. These antibiotic resistance mecha-

nisms are of great clinical concern as their development andspread across many

species of bacteria has led to the erosion of the efficacy of many commonly pre-

scribed antibiotics, in particular penicillin and its derivatives. Moreover, the pro-

duction of theseβ-lactamases persists in multidrug resistant strains, which can be

resistant to more than ten different antibiotics.

2.3 Methicillin-Resistant Staphylococcus aureus

2.3.1 Overview

The emergence of multi-drug resistance inStaphylococcus aureusbacteria has be-

come a major healthcare problem in recent years. Prior to theintroduction of antibi-

otics, patients withS. aureusbacteraemia had a mortality rate of over 80% [9]. This

situation improved dramatically when the firstβ-lactam antibiotic, penicillin, was

introduced into clinical use during the early 1940s [10]. However, the widespread

therapeutic use of penicillin resulted in selection for strains ofS. aureuscarrying

antibiotic resistance mechanisms [47]. By 1950, penicillin resistance was recorded

in over 50% of all staphylococcal isolates [48]. Today greater than 95% of allS. au-

reusisolates possess resistance to penicillin, and 40-60% of clinical isolates in the

United States of America and the United Kingdom express methicillin resistance

[11, 12].

Members of theStaphylococcus aureusspecies are gram-positive bacteria with

spherical-shaped cells (cocci) approximately 0.5 - 1µm in diameter [49]. They di-

vide in three planes, with a generation time of approximately 30 minutes, result-

32



ing in three-dimensional, cuboidal packets of cells [49]. They are non-motile and

generally exist as part of the normal flora found on nasal passages, skin and mu-

cous membranes in humans. However,S. aureusstrains have the potential to cause

a variety of infections from superficial skin lesions such asboils, to more seri-

ous conditions such as pneumonia.S. aureusis also a major cause of nosocomial

(hospital-acquired) and community-acquired infections [50, 51].

2.3.2 Antibiotic Resistance Mechanisms

Antibiotic resistance refers to the ability of a microorganism to resist the effects of

an antibiotic. The development and spread of antibiotic resistance in pathogenic

bacteria is affected by a complex range of interacting factors. The appearance of

resistant strains of bacteria is thought to be an ancient evolutionary event, however

the fitness cost associated with resistance mechanisms previously limited their pro-

liferation [52]. In recent years, the widespread use of antibiotics has resulted in a

significant positive selective pressure for resistant strains, particularly in the clinical

setting [11].

There are several responses that have been observed in bacteria in response to

selective pressure by the widespread use ofβ-lactam antibiotics. These include

the deletion of porin proteins in gram-negative bacteria toblock the passage of an-

tibiotic molecules through the bacterium’s outer membrane, and also the activation

of efflux exporter proteins [53, 54]. However, perhaps the most important resis-

tance mechanisms in gram-positive pathogens such asS. aureusbacteria are the

expression of enzymes calledβ-lactamases, and alterations to the molecular targets

(Penicillin-Binding Proteins) of the antibiotics (see Fig. 2.2).

The mediator of penicillin resistance inS. aureusis a β-lactamase enzyme
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Figure 2.2: Schematic representation of main antibiotic resistance strategies in
MRSA bacteria.A. Expression of alternate form of PBP2, called PBP2a, with re-
duced binding affinity for antibiotic.B. Production ofβ-lactamase enzyme which
cleaves antibiotic molecules.

which hydrolytically cleaves theβ-lactam ring present in penicillin and otherβ-

lactam antibiotics (Fig. 2.3).β-lactamase was first discovered inEscherichia coli

bacteria in 1940, andβ-lactamase-expressingS. aureusbacteria were isolated soon

afterwards [55, 56, 47]. The appearance ofβ-lactamases is thought to be an ancient

evolutionary event. However their broadened distributionacross many bacterial

species, under selective pressure from antibiotic usage, has become a serious health

concern [54].

Four variants ofS. aureusβ-lactamase have been identified by immunologic

methods (types A-D) [19]. The most well studiedβ-lactamase is the class Aβ-

lactamase characteristic ofS. aureusstrain PC1 [58]. This is encoded by the blaZ
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Figure 2.3: Examples of the chemical structures of three common β-lactam an-
tibiotics: A. Penicillin G.B. Ampicillin. C. Cephalothin. They are characterised
by the presence of aβ-lactam ring structure (square at the centre of each structure
above). Chemical structures were derived from the on-line DrugBank cheminfor-
matics database [57].

gene which is carried on a transposable element of a large plasmid. Expression of

β-lactamase is regulated by the interaction betweenβ-lactams in the environment

and a cell surface signal-transducer protein BlaR1 [48, 59]. After induction of ex-

pression, most of theβ-lactamase enzyme is secreted into the extracellular milieu,

while some remains bound to the cytoplasmic membrane of the cell [60]. When the

antibiotic concentration in the environment decreases, re-repression ofβ-lactamase
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expression occurs because BlaR1 is no longer auto-activated [61]. A study by Nor-

ris et al. (1994) found that among 50β-lactamase-producing MRSA isolates taken

from nine locations across the U.S.A., 80% expressed type Aβ-lactamase and the

remainder expressed type C. Type B and type Dβ-lactamases are thought to be less

common among MRSA strains [1].

Despite fifty years of selective pressure from continued useof β-lactam an-

tibiotics, S. aureushas not acquired any new or modifiedβ-lactamases [48]. This

differs considerably from other species, such asEscherichia coliwhere over a hun-

dred TEMβ-lactamase variants have arisen from the ancestral TEM-1 gene [62].

However, someS. aureusstrains have developed another mechanism that confers

resistance toβ-lactam drugs, including methicillin. This is based on alterations to

the penicillin-binding proteins, which are the main molecular targets ofβ-lactam

antibiotics in bacteria.

The introduction of methicillin in 1959 to treat infectionsof penicillin-resistant

Staphylococcus aureusresulted in the selection of MRSA strains [48]. As early

as 1961, MRSA strains were isolated and there has been a steady increase in inci-

dences since then [63]. NormalS. aureuscells produce four types of membrane-

bound transpeptidase proteins called penicillin-bindingproteins (PBPs 1-4), which

assemble and regulate the final stages of cell wall biosynthesis. The mode of ac-

tion of theβ-lactam antibiotics involves the acylation of a catalytic residue in the

transpeptidase active site of PBPs which results in the inhibition of the correspond-

ing catalytic activity (cell-wall cross-linking). However, MRSA bacteria contain a

gene calledmecA, which encodes an extra penicillin-binding protein, PBP2a.

The mecAgene is located on the staphylococcal cassette chromosomemec

(SCCmec), which is a mobile genetic element capable of transferral across dif-

ferent bacterial species [64]. At present, there are five known types of SCCmec
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(types I - V) distinguished by their genetic composition andsize [65]. It is not

known at what frequency SCCmecis acquired in nature, however Robinson & En-

right estimated that methicillin resistance inS. aureusmay have been acquired on

over 20 separate occasions during evolutionary history, with SCCmecType IV the

most frequently acquired [66]. SCCmecType IV has been associated with a recent

increase in community-acquired MRSA. This may be due to its smaller size and

lower fitness cost compared to the SCCmectypes I-III [67].

The product of themecAgene, PBP2a, does not bind theβ-lactam moiety read-

ily because the approach to the active site is sterically encumbered. When an MRSA

organism is subjected toβ-lactam stress, PBP2a confers resistance by supplement-

ing its transpeptidase activity (cell-wall cross-linking) to the transglycosylase func-

tion of native PBPs during cell wall synthesis [48].

2.3.3 Pharmacokinetics and Pharmacodynamics

The term pharmacokinetics refers to the absorption, distribution and decay of drugs

in patients, which determines the time course of drug concentrations in serum [68].

The complementary field of pharmacodynamics, in the contextof antibiotic thera-

pies, deals with investigating the functional relationship between the concentration

of drug and the rate of growth/death of the bacteria in its presence [69]. The most

common pharmacodynamic parameter used in the clinical setting has traditionally

been the minimum inhibitory concentration (MIC) of a drug. This is the concentra-

tion of antibiotic that ensures a net rate of bacterial growth equal to zero. However,

this parameter on its own does not give insights into the timecourse of antimicrobial

activity, or persistent effects of the drugs such as the post-antibiotic effect (PAE),

which is the length of time that bacterial growth continues to be inhibited after re-
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moval of the antibiotic [68]. For this reason, in recent decades there has been exten-

sive research into developing detailed pharmacokinetic-pharmacodynamic models

that can be used to optimize treatment regimens of antimicrobial drugs and aid in

rational drug design strategies.

The pharmacodynamics of antibiotics are usually studiedin vitro by develop-

ing time-kill curves of exponentially growing bacteria exposed to different concen-

trations of antibiotics [69]. Pharmacodynamic functions are a means of formally

describing the relationship between bacterial growth/death and the antibiotic con-

centration. This functional description can range from a very simple form, like

the MIC, to more complex mathematical models such as the sigmoid Emax mod-

els which quantitatively describe the net growth rate of thebacterial colony as a

function of the antibiotic concentration [69].

The sigmoidEmax model is a highly flexible, non-linear model which is used to

capture many concentration-effect relationships. It takes into account a minimum

threshold drug concentration below which little or no effect is observed, a log-linear

drug concentration versus effect intensity relationship,and a plateau at relatively

high drug concentrations [70]. Simpler models of the concentration-effect relation-

ship, such as linear or log-linear models, have been used when data are available

over a limited effect intensity range [71]. However, theEmax model is more com-

monly used because it can take into account the leveling of drug effect at higher

drug concentrations and appears to be more physiologicallyrelevant [70].

Mechanism-based mathematical pharmacokinetic-pharmacodynamic (PK-PD)

models generally incorporate equations or sub-models describing microbial growth,

the effects of the antimicrobial drugs, and the changing drug concentrations. A

recent review by Czock & Keller (2007) showed that most published mathematical

mechanism-based PK-PD models can be derived from a common model of anti-
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microbial drug effects based on cell growth and cell killingprocesses [72]. In this

common model, two pharmacodynamic functions are incorporated which determine

the replication and death rates of the bacterial colony respectively in relation to the

drug concentration. The relationship between the rate of bacterial growth inhibition

and the drug concentration is described using a sigmoidEmax model. The second

pharmacodynamic equation, which relates the increase in the rate of bacterial death

to drug concentration, is also based on a sigmoidEmax model. This commonality

among the apparently different models allowed their parameters to be related to the

MIC and to a common set of PK-PD indices [72].

Even the most inclusive pharmacodynamics functions assumea global (popu-

lation based) killing function that changes according to the changes in antibiotic

concentration. However, the approach followed in the current work documented in

this thesis involves the explicit incorporation of the kinetics of the interaction be-

tween antibiotics and the macromolecules involved in resistance and derives from

it those concentrations of antibiotic that lead to inhibition of bacterial growth. This

approach is complementary to the pharmacokinetic-pharmacodynamic modelling

approach generally used to assess and model drug efficacy. Itapproaches the un-

derstanding of drug function and efficacy from the perspective of the underlying

biochemical mechanisms that lead to the observed outcome. This, in conjunction

with PK-PD studies, would allow a computational framework of analysis for relat-

ing molecular/biochemical data with more high level pharmacological studies.
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CHAPTER 3

MODEL DESCRIPTION

3.1 Overview

The Micro-Gen Bacterial Simulator is an extended and modified version of an

agent-based Java software tool called BAIT (Bacteria-Antibiotic Interaction Tool)

[16]. Micro-Gen is coded in the C++ object oriented programming language. The

individual microorganisms are represented by software agents which store physical

traits of the bacterial cells as well as behavioural rules associated with them. The

modular nature of the program means that functionalities/characteristics specific to

particular bacterial species can be readily incorporated into the basic cellular model.

This research describes work carried out to simulate the antibiotic resistance mech-

anisms specific to MRSA bacteria. However, to illustrate thecapacity of Micro-Gen

to simulate various bacterial populations, some test results simulatingEscherichia

coli are also included to demonstrate the effect of motility on bacterial behaviour.

3.1.1 Environment

The culture environment is represented by a discrete, two-dimensional grid contain-

ing diffusible elements such as nutrients (glucose), enzymes and antibiotics. Each
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discrete grid position (called a “patch”) in the environment contains variables to

record the levels of nutrients, antibiotics and bacterial enzymes in it. It also in-

cludes pointers to bacterial agents that currently occupy the patch. The movement

of molecules in the environment is assumed to occur according to the process of

random diffusion down local concentration gradients. A discretized implementa-

tion of Fick’s first law of diffusion is used to calculate the movement of molecules

between adjacent patches [31]. According to the diffusion algorithm, the amount

of substance exchanged between two adjacent patches is proportional to the con-

centration difference (∆Mol) multiplied by a user-defined diffusion coefficient,D

(Fig. 3.1A). The diffusion coefficient determines the proportion of molecules that

are exchanged between two patches during each time step. When patches are diag-

onally adjacent to one another a diffusion rate modifier (1/
√

2) is applied.

There is also another higher-level diffusion rate modifier to take into account the

relative differences in the molecular mass (Mr) of the various molecules (glucose,

antibiotics,β-lactamases). The rate modifier of glucose is 1.0, i.e. the user-defined

diffusion co-efficientD directly determines the rate of diffusion of glucose. The

rates of diffusion of the other molecules are expressed relative to glucose. Glucose

was chosen as the benchmark since it is the smallest moleculethat is simulated

in the model. The diffusion rate modifiers for the other molecules are calculated

by dividing theMr of glucose by theMr of the diffusing molecule. The rate of

diffusion is not influenced by the density of bacterial cellsin the current patch, but

this will be included in future work to develop a more detailed model of particle

diffusion within a colony.
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3.2 Principal Model Entities

3.2.1 Bacterial Agents

The bacterial agents have a number of parameters associatedwith them along with

a set of behavioural rules that dictate how they interact with the environment. The

agents are an abstract representation of bacterial cells with the internal subcellular

processes not explicitly modelled. This is done in order to minimize the number

of parameters associated with each agent, because of the principle that each new

parameter makes it more difficult to understand what a model does [13]. The agent-

based approach can result in more parameter-rich models than with mathematical

state variable modelling, but this problem can be alleviated somewhat by the aggre-

gation of details into a single parameter. However, it is a challenge to determine the

appropriate level of aggregation since there is often a trade-off between ‘realism’

and keeping the model as simple as possible. The main input parameters for the

bacterial agents are listed in Table 3.1.

The bacterial software agents are stored in a “fabric” (array) data structure

which is initialized with a pool of bacterial agents at the start of the simulation.

Bacterial agents in the fabric only become active in the simulation when they are

flagged as “alive”. When reproduction occurs and a new daughter agent is added

to the environment, one of the non-active agents in the fabric is switched to ac-

tive status and its variables updated. The pre-initialization of a pool of non-active

agents in a fabric at the start of the simulation means that new software objects do

not have to be created or destroyed in memory every time a bacterium is born or

dies. This results in significant performance gains when dealing with large popula-

tions of agents. Furthermore, algorithms are used to maintain the bacterial fabric in

a non-fragmented state with active agents stored in contiguous blocks of memory.
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This is done to minimize the memory access times which otherwise could lead to a

significant performance bottleneck when running large numbers of agents.

Table 3.1: Input Parameters for Bacterial Agents in Micro-Gen model. Sample
values forS. aureusspecies included. b.u. = biomass units

Input Parameter Input Value

Biomass threshold for division 10000

Nutrient Intake (b.u. loop−1) 10.0

Survival cost (b.u. loop−1) 0.2

Stationary phase relative metabolic rate 0.2

Lag phase length (min) 66

β-lactamase production rate (µM s−1) 3.28 x 10−7

β-lactamase production cost (b.u.) 0.1

Antibiotic Intake (µM) 6.0 x 10−8

Kinetic Parameters (k2, Kd, kcat, KM ), see Table 3.2

3.2.1.1 Growth Parameters

The biomass of the cell is tracked within the simulation by using simulation units

called “biomass units”. Bacterial agents increase their biomass by absorbing nutri-

ent from the immediate environment. The rate of nutrient absorption is determined

by the “nutrient intake” parameter specified by the user. There is also a “survival

cost” associated with normal metabolic activities of the cell and this is subtracted

from the cell biomass each time step. As the agent accumulates nutrient, its biomass

increases until it reaches a certain threshold (“biomass threshold for division”) when

reproduction is triggered. Bacterial cells reproduce asexually by the process of bi-

nary fission, whereby a cell divides into two identical daughters cells approximately

half the size of the original cell.

The nutrient intake rate and biomass threshold for divisionwere determined
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by fitting to an experimentally determined bacterial doubling time of 29 minutes,

which is the estimated generation time ofS. aureusstrain BB255 [73]. The survival

cost parameter influences the length of the stationary phaseof the growth cycle.

A higher survival cost results in a shorter stationary phasebecause cells enter the

death phase more quickly. A survival cost of 2% of the rate of nutrient intake

was chosen for the test simulations recorded here. This represents a level which

does not limit the exponential phase of bacterial growth (see Chapter 4). However,

in nature this would vary considerably between different strains and for a more

detailed quantitative representation of the growth curve of a particular strain this

would need to be estimated from experimental studies.

Some other parameters associated with the bacterial agentsare the “stationary

phase relative metabolic rate” and the “lag phase length”. The first parameter refers

to a state of reduced metabolic activity that bacterial cells enter when they are sub-

jected to severe stress such as nutrient deprivation. The “survival cost” parameter

is multiplied by the proportion specified. The principal effect of this parameter is

to modify the length of the stationary phase (see Chapter 4).It represents the bac-

terium’s ability to preserve itself in hostile, nutrient-deprived conditions by shutting

down non-essential metabolic activities. A sample value of0.2 is used in our test

simulations for illustrative purposes, however as with the“survival cost” parame-

ter, this would need to be experimentally estimated in orderto give a quantitatively

accurate representation of the length of the stationary phase. It is not a signifi-

cant factor in the simulations for predicting the Minimum Inhibitory Concentration

(MIC) of an antibiotic (Chapter 5) since the drug is added during the exponential

phase of growth prior to the bacteria entering the stationary phase.

The “lag phase length” parameter specifies the length of timeit takes for the

bacteria to adapt to their new environment at the start of thesimulation. During this
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phase, bacterial cells synthesise the required cellular components to adapt to their

conditions. Their rate of nutrient intake increases from aninitial low level until

the maximum intake rate is achieved. This represents the accumulation of proteins

required to process the nutrients available in the bacterium’s new environment. The

underlying dynamics that determine the length of the lag phase are not explicitly

modelled, however there is a random element introduced by the fact that the bacteria

are initialized with different energy states at the start ofthe simulation. Pratset

al. (2008) describe a more detailed model of the underlying population dynamics

occurring within the lag phase using an agent-based approach [41].

3.2.1.2 Antibiotic Resistance Mechanisms

If the bacteria are exposed to antibiotics, this triggers the synthesis and release of an

enzyme calledβ-lactamase into the extracellular milieu (Fig. 3.2). Theβ-lactamase

enzyme is an important defensive protein that bacterial cells secrete to destroy any

β-lactam antibiotics (e.g penicillin) in their vicinity. The rate ofβ-lactamase pro-

duction and the extra metabolic cost associated with it can be specified by the user.

For our simulations, theβ-lactamase production rate was estimated by varying it

over a range of values and calculating the minimum inhibitory concentration (MIC)

of penicillin G at each value (using kinetic parameters for penicillin G described

below). Theβ-lactamase production rate was chosen as that which resulted in a

simulated MIC equal to the experimentally determined MIC for penicillin G versus

the particular bacterial strain being modelled.

For the test simulations, Type A and Type Cβ-lactamase-producing MRSA

strains were modelled and calibrated with the experimentalresults of Nor-

ris et al. (1993) for penicillin G (Type A MIC = 72.1µg/ml; Type C =

47.9µg/ml) [1]. Based on this, theβ-lactamase production rates were es-
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Figure 3.2: Schematic representation of release ofβ-lactamase enzymes fromS.
aureuscell. Production ofβ-lactamase is induced by binding ofβ-lactam antibi-
otics to a cell surface signal transducer protein (BlaR1). Most of theβ-lactamase
enzyme is secreted into the extracellular milieu while someremains bound to the
cytoplasmic membrane of the cell.

timated to be 3.28 x 10−7 µM s−1 agent−1 for the type A simulated strain and

1.62 x 10−7 µM s−1 agent−1 for the type C simulated strain.

There are a number of parameters listed in Table 1 dealing with the interactions

between the bacterial agent and antibiotic molecules. The antibiotic intake parame-

ter determines the rate at which free antibiotic is depletedin the patch by absorption

across the cell wall of the bacteria. There are two kinetic parameters (k2, Kd) which

determine the rate at which the antibiotic molecules bind topenicillin-binding pro-

teins (PBPs) in the cytoplasmic membrane, underneath the cell wall. There are also

two kinetic parameters (kcat, KM ) that describe the interactions between antibiotic

molecules andβ-lactamase enzymes in the environment. Values for these kinetic

parameters were taken directly from experimental literature and are explained in
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the sections on antibiotics andβ-lactamases below.

3.2.1.3 Movement and Chemotaxis

The bacterial agents in Micro-Gen, for motile bacteria, canimplement a “run and

tumble” mode of movement characteristic of species with flagella, such asEs-

cherichia coli [74]. They move forward smoothly during the “run” phases and

reorient to a random direction during the alternating “tumble” phases (Fig. 3.3).

They also display positive chemotaxis when exposed to nutrient concentration gra-

dients. This is facilitated by a temporal sensing system whereby the bacteria peri-

odically compare nutrient concentrations as they move frompatch to patch through

the environment [75]. When a bacterium encounters a positive nutrient gradient it

lengthens the time of its “run” phase, and the relative duration of runs and tumbles

determines if the cell moves towards or away from a chemical environment.

The impact of positive chemotaxis by the bacterial agents inthe presence of nu-

trient gradients is illustrated in Figure 3.4. The bacteriapossess a temporal sensing

system to detect nutrient gradients and move towards areas of higher nutrient con-

centration. In Figure 3.4, two localised areas with higher nutrient concentrations

were created in the upper-left and lower-right corners of the environment. As the

nutrient diffuses into the rest of the environment it produces a gradient and the bac-

teria respond by moving up this gradient. In Figure 3.4D (taken at the 2 hour time

point), the bacterial cells, marked in yellow, can be seen clustered around the areas

of high nutrient concentration, represented by lighter shades of grey.

3.2.1.4 Overcrowding Algorithm

In the case ofS. aureusbacteria, which are non-motile, an overcrowding algorithm

is applied to take into account the physical size constraints of a single patch in
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Flagellum

Figure 3.3: Diagram of “run and tumble” mode of movement characteristic of bac-
teria with flagella (e.g.E. coli). During the run phase, bacteria swim forward by
active propulsion from the flagellum. This is punctuated by tumbles, where the cell
randomly reorients to a new direction. Decreased frequencyof tumbles in response
to a chemical attractant gradient (e.g. nutrient) results in migration of the cell up
the gradient in an analogous way to a biased random walk (chemotaxis).

the environment. The area of each patch is configured to represent approximately

1µm2 of medium. Depending on the size of the bacterial species being simulated,

overcrowding will come into effect when more bacteria occupy the patch than can

be accommodated. For example, the estimated cell diameter of a newly dividedS.

aureuscell is 0.5µm [49]. Therefore, when more than four such cells occupy a

single patch an overcrowding algorithm is applied (Fig. 3.1B). According to this,

the probability,p(xi), of a bacterial cell in an overcrowded patch being moved to

an adjacent patchi is inversely proportional to the relative bacterial biomass in the

adjacent patch. The direction a cell is moved is determined by sampling from the

resultant probability distribution of the surrounding patches.

A ‘ bacOvercrowd’ input parameter may be specified by the user to control the

rate of spreading of the bacterial colony across the surfaceof the environment. If
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A. (Time = 2 min) B. (Time = 33min)

C. (Time = 1 hour) D. (Time = 2 hours)

Figure 3.4: Screenshots from Micro-Gen illustrating positive chemotaxis of motile
bacterial agents towards areas of higher nutrient concentration: (A) Bacteria (yel-
low) initially randomly distributed, with localised areasof high nutrient concentra-
tion initialised in upper-left and lower-right corners of the environment. (B - D) As
nutrient diffuses into the environment, the bacteria detect the nutrient concentration
gradient and move towards areas of higher nutrient concentration. Nutrient lev-
els in environment are represented by colour-coded gradient (lighter shade = higher
conc.) with blue, green and red colours representing high, medium and low nutrient
concentrations, respectively.
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the bacterial biomass in the current patch is greater thanbacOvercrowdmultiplied

by the lowest bacterial biomass in an adjacent patch then thebacterial overcrowding

algorithm is applied. For example, with abacOvercrowdvalue of 1.0 there must

be at least one adjacent patch with a bacterial biomass less than or equal to the

current patch for there to be a chance of a bacterial cell being moved. On the other

hand with a value of 2.0, the bacterial biomass must be twice the level of all the

surrounding patches. A higher value results in more denselypacked cells and less

radial expansion of the colony (Fig. 3.5).

ThebacOvercrowdparameter may be thought of as a crude “aggregation” con-

straint. However, a more sophisticated model of cell aggregation would need to

be implemented to recreate the complex cell assemblages found, for example, in

biofilm communities. However, the bacterial overcrowding algorithm suffices to

represent the gradual spreading of non-motileS. aureuscells across the surface of

an agar plate. The parameter is used to ensure that movement of bacterial cells is

always down a bacterial biomass concentration gradient (bacOvercrowd> 1.0). In-

creasing thebacOvercrowdinput value affects the transition from the exponential to

the stationary phases of the bacterial population growth curve (Fig. 3.6). For the test

simulations documented in this report, abacOvercrowdvalue of 1.3 was used. This

represents a relatively unconstrained expansion of the colony (down the bacterial

biomass concentration gradient), i.e. only minimal cell aggregation is assumed.

3.2.2 Antibiotics

The quantities of antibiotics in the environment are storedas variables in each patch

and subject to diffusion as described above. Each molecule has a distinct half-

life derived from the biological literature which determines its rate of degradation
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A. B.

C. D.

Figure 3.5: Effect of ‘bacOvercrowd’ parameter on the radial expansion of bac-
terial colonies. Four different simulations were carried out with different input
values for bacOvercrowd:A. bacOvercrowd = 1.0;B. bacOvercrowd = 1.3;C. ba-
cOvercrowd = 1.6;D. bacOvercrowd = 2.0. Higher values of bacOvercrowd result
in more aggregation of bacterial cells and less radial expansion. Images were pro-
duced using the open-source ‘Animp’ 3D visualisation software (developed by Ray
Seyfarth, University of Southern Mississippi, USA).
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Figure 3.6: Log growth curves of simulated MRSA bacterial agents grown under
in vitro culture conditions with different ‘bacOvercrowd’ input parameter values
(1.0 - 2.0) Initial inoculum = 64 bacterial agents.

over time (Table 5.3) [57]. If there are bacterial agents in the patch they will

absorb antibiotic according to their specified rate of intake. The ability ofβ-lactam

antibiotics to inhibit bacterial cell division is based on the fact that they bind to

proteins in the cell membrane called penicillin-binding proteins (PBP) which are

necessary for cell division (Fig. 3.7). Upon binding to PBP the antibiotic inactivates

it and if a significant proportion of PBPs in the cell are inactivated the bacteria will

be unable to reproduce and cell death may occur [49].

The interactions between theβ-lactam antibiotic molecules and PBP2a are ex-

plicitly represented in the simulation. However, the interactions with the other PBPs

present in the bacterial cell membrane (PBPs 1 - 4) are not explicitly modelled for

the MRSA bacterial agents. This is sufficient for representing MRSA because the

limiting reaction for antibiotic efficacy is that with PBP2a, which has a binding
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Figure 3.7: Schematic representation ofβ-lactam antibiotic (e.g. penicillin or
cephalothin) binding to penicillin-binding protein (PBP)in cell membrane of bacte-
rial cell. PBP is required for normal cell wall synthesis to occur during cell division.
However, binding and acylation of the PBP by antibiotic results in inhibition of this
function.

affinity for β-lactams that is reduced compared to the other PBPs. This reduces

the level of complexity caused by introducing more empirical parameters into the

model.

There is an internal counter associated with each bacterialagent which repre-

sents the proportion of PBP2a molecules that have been acylated (or bound) by

antibiotics. When this value reaches 100%, then death of thebacterial agent occurs.

Reproduction will only occur successfully when the percentage of bound PBP2a in

the bacterial agent is<10%. When the percentage of bound PBP2a is between 10%

and 100%, cell division is assumed to be disrupted until normal turnover of protein

in the cell reduces this percentage below the threshold again. The threshold values

are maintained constant across all the simulations documented here in order to be

able to compare the relative efficacies of the antibiotics against a single hypotheti-

cal MRSA strain. In nature, however, the relative values forthese thresholds might
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vary considerably between different strains [76].

In order to quantify the efficacy of the antibiotic at inhibiting cell division, ki-

netic parameters describing the reaction between antibiotic and PBP2a in the cell

are used. This is a pre-steady state reaction, with the parametersk2 (rate of inacti-

vation of PBP2a), andKd (dissociation constant) used to describe it. The ratio of

these values (k2/Kd), or the second order rate constant, is a convenient measureof

the antibiotic efficacy at inhibiting PBP2a function. The proportion of PBP2a that

is inactivated per second,ka (the apparent first order rate constant), at a given drug

concentration can be calculated as a function of these parameters (equation 3.1)

[76].

ka =
k2[Ab]

Kd + [Ab]
(3.1)

Values for the kinetic parameters,k2 andKd, of PBP2a were derived from the

biological literature (Table 3.2) [77, 78, 20]. By inputting these parameters it was

possible to estimate the proportion of PBP2a de-activated by antibiotic each time

step. Once the proportion of acylated PBP2a crosses a certain threshold, then cell

division is inhibited (see above).

3.2.3 β-lactamase Enzymes

β-lactamase enzymes are proteins produced by resistant bacteria that attack a com-

mon type of antibiotic, calledβ-lactams, which includes penicillins, such as peni-

cillin G and ampicillin, and cephalosporins such as cephalothin. In the case of

MRSA bacteria, most of the enzyme is released into the extracellular milieu where

it binds to and cleaves antibiotic molecules (Fig. 2.2B).
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When aβ-lactamase-producing bacterium comes into contact with antibiotic,

an intracellular signal is sent to activate expression of the β-lactamase gene. A

true/false flag forβ-lactamase expression is associated with each bacterial agent.

After the first interaction (when the flag is changed to true),there is an exponential

increase in theβ-lactamase production rate until the maximum rate is reached after

approximately eighty minutes [59]. This corresponds to theactivation of gene ex-

pression mediated by antibiotic binding to the signal-transducer protein BlaR1, as

described in chapter 3.

β-lactamase is released into the local patch where it is subject to diffusion ac-

cording to Fick’s First law of diffusion, as described above. It also has a defined

half-life parameter determining its rate of degradation over time in the environ-

ment. When antibiotic has been removed from the environment, re-repression of

β-lactamase expression occurs (BlaR1 is no longer auto-activated - software flag

changed to false).

The interactions betweenβ-lactamase enzymes and antibiotic molecules in the

same patch are governed by defined kinetic rules. Michaelis-Menten kinetics are

used to describe the reaction, with the reaction rate,V, calculated as the rate at

which antibiotic is cleaved (or de-activated) by the enzyme(equation 3.2):

V =
kcat[E]t[Ab]

KM + [Ab]
(3.2)

The kinetic parameters required as input to the model are theturnover rate,

kcat, and the Michaelis constant,KM , the ratio of which (kcat/KM ) is often used

as a measure of enzyme efficiency [19]. These were derived from the biological

literature for MRSA (Table 3.2) [19]. [E]t and [Ab] refer to the concentrations of

56



Table 3.2: Kinetic Parameters ofβ-lactam Antibiotics versus Type A and Type C
β-lactamase-producing MRSA. Pen G = Penicillin G; Amp = Ampicillin; Ceph =
Cephalothin.

Parameter
Type A MRSA Type C MRSA

Pen G Amp Ceph Pen G Amp Ceph

kcat (s−1) 171.0 308.0 0.015 210.0 355.0 0.095

KM (µM) 51.1 255.0 6.8 55.9 122.0 5.2

k2 (s−1) 0.185 0.0047 0.00115 0.185 0.0047 0.00115

Kd (µM) 15400 495 586 15400 495 586

β-lactamase enzyme (sum of both free and occupied enzyme) andantibiotic in the

local patch respectively.

3.2.4 Pro-Drugs

The basic premise of the enzyme-catalysed therapeutic activation (ECTA) pro-drug

treatment strategy is that a substrate-like pro-drug molecule containing aβ-lactam

structure is administered to treat an infection. When it comes into contact with

β-lactamase producing bacteria, it undergoes therapeutic activation by cleavage of

its β-lactam ring which causes selective release of a cytotoxic anti-microbial agent

[79, 80]. More details about this approach are included in chapter 6.

From a conceptual standpoint, the pro-drugs are represented as antimicrobial

agents that start the simulation in an inactive form, but become flagged to ‘active’

status when they come into contact withβ-lactamase enzymes in the environment.

The reaction between pro-drug andβ-lactamase is defined by the same reaction

kinetics that were used to represent the antibiotic-β-lactamase reaction (equation

3.2). This is because it is essentially the same reaction between aβ-lactam ring

structure in the pro-drug molecule and theβ-lactamase enzyme. However, the out-

come of the interaction is reversed, whereby the pro-drug molecule is activated
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after cleavage of itsβ-lactam ring structure, rather than inactivated as is the case

with traditional antibiotic molecules.

The active component of a pro-drug may be any type of antimicrobial agent

depending on how it was designed. Therefore, in order to represent specific pro-

drugs, the Micro-Gen model would have to be adapted to take into account the

specific mode of action of the particular active agent released. For the purposes

of this study, the aim was to assess the pro-drug delivery system from a general

perspective so the emphasis was placed on analysing the effects of theβ-lactamase

mediated activation step.

For the case study described in chapter 6, the active component of the pro-drugs

NB2001 and NB2030 was triclosan. The mode of action of this drug is not fully

understood, although it is thought that an important component is the binding to

the enoyl-[acyl-carrier-protein] reductase (FabI) enzyme involved in the bacterial

fatty acid synthesis cycle [81]. The interaction between the activated component of

the pro-drug and the bacterial cell was modelled using the pre-steady state reaction

kinetics described above for theβ-lactam antibiotics (equation 3.1).

3.3 Program Structure

3.3.1 Program Flow Structure

Micro-Gen is coded in the C++ object-oriented programming language with indi-

vidual components of the simulation represented by software objects. At the start

of a simulation, the main components of the environment, thepatches, are initial-

ized, along with the bacterial fabric containing the pool ofpre-initialized bacterial

agents.
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The principle activities of the simulation are carried out during the main pro-

gram loop which represents a discrete time step of the model (Fig. 3.8). The loop

is configured to represent approximately two seconds of real-time, although this is

modifiable by the user to apply a different temporal granularity. The various time-

dependent input parameters (e.g. nutrient intake rate, antibiotic kinetic parameters)

must be configured to the specified timescale.

The program loop is divided into six distinct steps during which different as-

pects of the simulation are implemented. The first step (diffusion) is to update the

levels of the various molecular constituents (nutrients, antibiotics and enzymes) of

the environment. Fick’s first law of diffusion is applied at this point to model the

movement of free molecules between patches.

Step two (metabolism) is when the basic metabolic processesof the bacterial

cells are modelled. This includes subtracting a survival cost from the bacterium’s

energy stock, representing energy expended on basic housekeeping duties in the

cell. If β-lactamase gene expression is active then the enzyme is produced and

secreted into the environment, with an associated energy cost.

The third step is to update the positions of the bacterial agents by applying a

movement algorithm. In the case of bacteria capable of propelled locomotion, such

as Escherichia coli, the model implements their characteristic “run and tumble”

motion [17]. E. coli cells can respond to a chemical stimulus (chemotaxis) such as

a positive nutrient gradient by extending the length of their run phase relative to the

tumble phase. This results in movement of the cells towards regions of higher nutri-

ent content.S. aureuscells are immotile so there is no active movement algorithm

associated with them. However, if a patch becomes overcrowded then it is possi-

ble for cells to be shunted into an adjacent patch, in which case an overcrowding

algorithm is applied at this step (Fig. 3.1B).
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Figure 3.8: Diagram of program flow structure in Micro-Gen Bacterial Simulator,
including the main stages of program loop.

Step 4 (agent interactions) of the program loop is when the kinetic rules for

bacteria-antibiotic andβ-lactamase-antibiotic interactions are applied. These re-

actions are governed by defined kinetic rules, with parameters derived from bio-

chemical studies used to determine the reaction rates (Eqs.3.1, 3.2). During the

following step (feeding), the bacterial agents take up nutrient from the environment

at a defined rate. In the case of the simulations carried out for this study, the rate is
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that which will result in a generation time of 29 minutes [73].

The final stage of the loop is when bacterial agents reproduceaccording to the

process of binary fission, producing two identical daughtercells. Reproduction is

dependent on the fact that the bacterial cell’s energy storehas exceeded a defined

threshold for replication, and the level of antibiotic damage (proportion of inacti-

vated PBP) is below a critical level. The exit conditions forthe simulation are if

there are no longer any bacterial agents alive or a specified number of loops have

been completed.

3.3.2 Graphical Output

The simulation may be run with an optional dynamic graphicaldisplay that shows

the positions of bacteria in the environment and the levels of various molecular com-

ponents such as nutrients or antibiotics in real-time. Thiscan be useful for studying

pattern formation in colonies. For example, in Figure 3.9, the characteristic circular

colonies ofS. aureusbacteria can be seen.

The model also outputs a movie file compatible with the open-source 3D visual-

isation software ‘Animp’ (Animated Particles) developed by Ray Seyfarth (Univer-

sity of Southern Mississippi, Hattiesburg, MS 39406, USA).Animp is an OpenGL-

based 3D renderer that takes advantage of modern 3D graphicscards for visualising

particles in three-dimensional space. Although Micro-Genis a two dimensional

model (X and Y dimensions), it produces a pseudo-3D output (for visualisation

purposes) by assigning the Z dimension to represent the number of bacterial cells

in a patch (Fig. 3.10). This 3D visualisation is useful, for example, for assessing

the effect of the bacterial overcrowding algorithm on cell densities within a colony

(Fig. 3.5). However, it will become more important when Micro-Gen is expanded to
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Figure 3.9: Screenshot of Micro-Gen simulation showing growing S. aureus
colonies (yellow-brown, lighter = higher bacterial biomass) on simulated nutrient
agar medium. Shaded blue contours represent nutrient gradient (lighter blue =
higher nutrient concentration).

represent three-dimensional space, which is an important future aim of the project.

3.3.3 Parallelisation

A challenge of modelling from the individual cellular levelup is that it requires

a significant amount of computing resources in order to scaleup to biologically

realistic numbers of cells. For example, the concentrationof bacterial cells in na-

ture can range from 106 - 1010 cells per millilitre of seawater [82]. Despite rapid

advances in traditional desktop computers, due to their memory and performance

limitations it is currently not practically feasible to model the numbers of agents

typically found in nature using only a single processor. Therefore, it is important

to be able to take advantage of parallel high performance computing resources in
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Figure 3.10: Screenshot of Animp 3D movie file generated by Micro-Gen simula-
tion showing growingS. aureuscolonies (yellow spheres). Images were produced
using the open-source ‘Animp’ 3D visualisation software (developed by Ray Sey-
farth, University of Southern Mississippi, USA).

order to tackle problem at a more realistic scale.

Micro-Gen is designed to take advantage of high performancecomputing re-

sources by incorporating an implementation of the Message Passing Interface (MPI)

for running in parallel on multiple computers. The strategyof domain decompo-

sition is used for parallelisation, whereby the simulationenvironment is divided

equally among the computing nodes (Fig. 3.12). Each node processes its section of

the environment independently of the other nodes. Communication between adja-

cent nodes occurs at overlapping boundary conditions wherequantities such as nu-

trient, antibiotic and enzyme levels are exchanged during each time step (Fig. 3.13).

For example, when a bacterial cell crosses over the border separating parts of the

environment controlled by two different processors/computers then the bacterium
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Figure 3.11: Diagram of principal classes of Micro-Gen model using standard UML
notation. Yellow shaded components represent base classesof a generalised agent-
based model. Derived classes specific to Micro-Gen, which contain functionality
for representing bacterial cells and antibiotics, are shaded in blue-green.

is sent across to the other computer in an analogous way to sending a letter between

two postal addresses.

By being able to run the simulation in tandem across multipleproces-

sors/computers, it frees up the traditional limitations ofcomputing resources found

in the desktop space. The model can be scaled up to as many processors/computers

as there are available in order to increase the environment size from the microscopic

level up to a visible scale. However, it is important to optimize parallel algorithms

to avoid the process of diminishing returns as the numbers ofprocessors are in-

creased. This is because with more processors there is more traffic/communication

between them and this can result in significant bottlenecks.
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Figure 3.12: Screenshot of Micro-Gen simulation running inparallel on four com-
puting nodes, with bacterial colonies (yellow) growing on nutrient agar medium
(blue). Lighter shade of blue represents higher nutrient concentration, and lighter
shade of yellow represent higher bacterial biomass in patch.

For this reason, particular emphasis has been placed on optimizing the commu-

nication strategy for sending bacterial agents between different computer nodes in

Micro-Gen, while ensuring the integrity of the informationin transit. At each iter-

ation of the main program loop, data of the same type that has to be transferred be-

tween nodes is collected into communication buffers and then sent as a single large

message, rather than a series of smaller individual messages in order to minimize

the latencies associated with multiple message calls. Advances in communication
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Figure 3.13: Schematic representation of communication between adjacent nodes
when Micro-Gen is run in a parallel configuration. Overlapping boundary condi-
tions are shaded.

technology for connecting computer nodes within clusters have also minimized the

overheads associated with communication traffic.

The movement of bacteria between nodes is complicated by thefact that MPI

has no in-built mechanisms for communicating software objects between nodes.

Therefore, the constituent cell traits of the bacterial agents are communicated as

basic variables. When these variables are received, pre-initialized bacterial agents

from the fabric data structure are used to make a copy of the bacteria on the receiv-

ing node. The availability of a pool of pre-initialized bacterial agents minimizes

the performance penalty associated with this step, since new bacterial objects do

not have to be created/destroyed in memory each time a bacterial agent is sent to a
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new node. This means that a simulation can be seamlessly divided among multiple

processors/computers to obtain an efficient speed-up on parallel architectures.

3.3.3.1 Parallel Performance

It is important to be able to scale up the simulation to represent biologically realis-

tic numbers of agents in order to correctly predict emergentpopulation behaviour.

The model is scalable to represent population sizes of>107 bacterial agents, so as

to represent more closely the numbers found in nature. For example, when simu-

lating the standard growth curve of a bacterial population with a maximum size of

0.5 x 107 bacteria (environment size = 10002 patches) it takes 158 minutes to simu-

late 33 hours of real-time on a local 16 x2.8 GHz Pentium 4 computing cluster (Dell

PowerEdge 1750), with the total memory footprint of the program across all nodes

<512 MB. The parallel efficiency of the algorithm was found to be >90% when

tested in parallel across the 16 nodes (Table 3.3) [18].

Table 3.3: Parallel Efficiency of Micro-Gen When Run on a 16 Node (Intel Xeon
2.8 GHz) Computing Cluster

No. of Nodes Parallel Efficiency (%)
4 97.6
9 97.2
16 91.1

The communication overheads associated with sending agents between nodes

are minimized by the use of the ‘fabric’ data structure containing a pool of pre-

initialized bacterial agents (see above). A defragmentation routine is applied to the

bacterial fabric to prevent efficiency losses accumulatingas agents are interchanged

between nodes. Without this defragmentation step, the overall execution time would

increase by over four-fold for the test conditions above dueto gradual fragmentation
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of the fabric data structure.
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CHAPTER 4

POPULATION DYNAMICS

4.1 Overview

Micro-Gen is a highly scalable, parallel model that can be used to test theoreti-

cal assumptions about bacterial cell biology and how it affects overall population

dynamics. A number of test simulations were carried out to explore the mechanis-

tic basis of the model and how changes in the input parametersaffect the model

output. This involved testing situations or parameter values that may not occur in

nature (so-called ‘strong cues’) in order to gain insight into the mechanisms im-

portant for the model output. Examining extreme or hypothetical scenarios is an

important step in developing an agent-based model, due to its inherent complexity,

in order to understand how the model works and identify potential limitations [13].

4.2 System Dynamics

For the test simulations, the effect of one parameter was investigated while all other

parameters were kept constant in order to isolate the influence of the particular

parameter under investigation. For the same reason, the test simulations involved
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a phenotypically homogeneous bacterial population growing in a heterogeneous

environment. This is to avoid any ambiguity in the output resulting from random

factors related to different competing sub-populations. However, the strength of

the agent-based approach exists in being able to easily introduce this heterogeneity

into the model in order to study more complex situations, which will be the topic of

future work.

The strain of bacteria modelled in these simulations was MRSA, a clinically

important pathogenic strain (see Chap. 3). The dimensions of the environment were

1000 x 1000 patches or grid elements (approximately 1mm2 in real-world) with

each patch containing 80000 simulation units (called “biomass units”) of nutrient.

Biomass units are used to express the amount of nutrient available relative to the

bacterial nutrient intake rate (10 b.u. loop−1).

4.2.1 Standard Bacterial Growth Curve

Populations of bacteria follow a standard growth curve consisting of lag, log, sta-

tionary and death phases, when grown in nutrient limited culture conditions. During

the initial lag phase, there is no net increase in cell numbers as the cells adapt to

their new conditions. The log phase is when the bacterial numbers increase ex-

ponentially until nutrient or space constraints limit their growth and they enter the

stationary phase. The final death phase occurs when the available nutrient reserves

have been exhausted. This behaviour is reproduced in the model by incorporating

five key parameters: lag phase length; nutrient intake rate/biomass threshold for

division; survival cost; and relative stationary phase metabolic rate (see Chap. 3).

The lag phase is the initial period after inoculation in fresh culture medium

when cell division has not begun to occur [83]. During this phase, the bacteria
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begin to synthesize macromolecules required to transport and process the nutrients

from their new environment. Once they have adapted to their environment, cell

division begins to occur and the bacteria enter the logarithmic phase of growth.

This is typified by an exponential rate of increase in cell numbers until nutrient

availability or accumulation of waste products begins to limit growth.

When the nutrient content of the medium has been exhausted, the bacteria typ-

ically enter the stationary phase where no net increase/decrease in cell numbers is

observed. Bacteria in this phase are characterised by a metabolically less active and

more resistant state [84, 85]. A low level of endogenous metabolism is maintained

and the rate of protein turnover by the cell increases. However, as nutrient starva-

tion persists, eventually most of the cells enter the death phase, characterised by an

exponential decrease in viable cell counts.

The length of the lag phase is influenced by the energy state ofthe cells when

they are added to the environment and the lag phase length parameter. Each cell

is randomly set with a particular energy state (in biomass units) at the start of the

simulation. The maximum rate of growth during the exponential phase is deter-

mined by the nutrient intake rate relative to the biomass threshold for division (see

Chap. 3). The effect of the survival cost parameter can be seen in Figure 4.1A by

varying over a range of 1 - 64% (relative to nutrient intake rate), i.e. with a value

of 1%, the bacterial cell burns up approximately 1% of the nutrient it absorbs in

normal metabolic activities per loop. A survival cost inputvalue of 8% or more

results in no apparent stationary phase for the simulated population as a whole, but

instead the population immediately enters the death phase following the exponen-

tial phase. Also, the relative stationary phase metabolic rate parameter is important

for determining the length of the stationary phase (Fig. 4.1B). However, it has no

influence on the exponential phase or entry into the stationary phase.
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Figure 4.1: Log growth curves of simulated MRSA bacterial agents grown under
simulatedin vitro culture conditions with different input values for:(A) “Survival
Cost” parameter (1% - 64%) - values represented as a percentage of the bacterial
nutrient intake rate (10.0b.u. loop−1 - see Chap. 3);(B) “Stationary Phase Rela-
tive Metabolic Rate” (0.01 - 1.0) - representing the relative survival cost during the
stationary phase when the bacterial cells enter a state of reduced metabolic activity
induced by severe stress such as nutrient deprivation.
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4.2.2 Antibiotic Intake Rate

Figure 4.5 shows results from varying the antibiotic intakerates for penicillin G,

ampicillin and cephalothin on the length of time bacterial growth is inhibited by the

antibiotics. The antibiotic intake rate is proportional tothe amount of PBP proteins

in the cell membrane ofS. aureus. As this parameter is increased, more antibiotic

is bound per time step, thus depleting the available reservein the local environment

more quickly. A range of values was explored in order to assess the impact of this

parameter on the model.

The intake rate parameter was varied in the range 10−10 to 10−5 µM loop−1 to

investigate how this influences the output of the simulation. For cephalothin, the

rate of antibiotic intake does not have any significant effect on the inhibition time

of the drug over the wide range of values tested. For penicillin G and ampicillin,

the antibiotic intake rate directly influences the inhibition time up to a certain point.

However, interestingly, in the range 10−8 - 10−5 there is no significant change in the

inhibition times. Therefore, there seems to be an upper limit (10−8), in the context

of this model, above which a higher number of PBPs in the cell membrane does not

affect the efficacy of the antibiotics.

For all further test simulations, an antibiotic intake rateof 6.0 x 10−8 was chosen

which represents a comparatively high number of PBP proteins in the cell mem-

brane. This was chosen in order to represent the worst case scenario in terms of

drug treatment success, i.e. an MRSA bacterial cell that expresses a high number of

PBP proteins will be inherently more resistant toβ-lactam antibiotics. However, fu-

ture work will include expanding the model to include a more detailed quantitative

representation of the interactions of the antibiotic molecules not only with PBP2a,

but also with the other PBPs (1 - 4) characteristic ofS. aureusbacteria, using exper-
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imentally estimated data about the total number of PBP copies per cell [86]. Then a

better quantitative estimation of the antibiotic intake rate would be able to be made.

4.2.3 Antibiotic Half-Life

In order to explore the effects of antibiotic half-life on the outcome of treatment of

MRSA, this parameter was varied over a range of 5 minutes to 8 hours for the an-

tibiotics penicillin G and cephalothin (Fig. 4.2). These two antibiotics were chosen

in order to illustrate the different responses that can occur to changes in half-life

depending on the type of antibiotic used. Cephalothin is predicted to be strongly

sensitive to changes in half-life. For example, increasingthe half-life from 30 min-

utes to 480 minutes results in a ten-fold increase in the length of time MRSA growth

is inhibited by the antibiotic. However, for penicillin a similar change in half-life

results in less than a 10% increase in inhibition time.

The half-life of an antibiotic can be an important determinant of treatment suc-

cess. It varies considerable depending on environmental conditions, and in partic-

ular the half-life of an antibioticin vivo (i.e. in a patient) is often considerably

reduced compared toin vitro laboratory conditions. Therefore, it is useful to un-

derstand the impact of the half-life parameter on our predicted results for antibiotic

efficacy.

It is interesting to note from the results that penicillin G is not as sensitive to

half-life changes as cephalothin is. A possible explanation for this is that it is due

to the different reaction profiles of cephalothin and penicillin G with MRSA. As

will be discussed further in the next chapter, cephalothin is relatively resistant to

β-lactamase enzymes (lowkcat/KM ) secreted by the MRSA bacteria. Cephalothin

binds slowly to penicillin-binding protein 2a (PBP 2a) in the bacterial cell mem-
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Figure 4.2: Predicted effect of half-life parameter of antibiotic molecules on length
of time bacterial growth is inhibited. Antibiotic added after 4.4 hours of simulated
time, during exponential phase of growth. Cephalothin = 103.1µg/ml; Penicillin
G = 72.1µg/ml. Round points represent default input values for half-life parameters
(Ceph,= 30 min; Pen G = 42 min) [57].

brane, and increasing the half-life directly improves efficacy by allowing more

antibiotic to survive for a longer time to bind to the MRSA. Penicillin G on the

other hand is cleaved more rapidly byβ-lactamase enzymes in the environment and

therefore, increasing its half-life does not improve the efficacy since it is rapidly

destroyed by theβ-lactamases.

4.2.4 Diffusion Rate

In order to investigate the effects of nutrient availability on the growth and develop-

ment of bacterial colonies the user-defined diffusion coefficient for Fick’s First Law

of diffusion was varied over the range 0.0 - 0.2, where a larger co-efficient means

a higher rate of diffusion (Fig. 4.3). The rate of diffusion is an important param-
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Figure 4.3: Effect of rate of diffusion on log growth curves of simulated MRSA
bacterial agents grown under simulatedin vitro culture conditions. The diffusion
co-efficient for Fick’s First Law of diffusion was varied between 0.0 - 0.2. The
characteristic phases of the standard bacterial growth curve (lag, log, stationary and
death phases) are observable. Environment size = 10002 patches. Cellular input
parameters listed in Chapter 3.

eter dictating population development as it limits the transfer of nutrients towards

the interior of a bacterial colony. The diffusion co-efficient for Fick’s First Law of

diffusion may be configured to represent different environments by calibrating with

experimental results. However, for the tests here the aim was to give a more gener-

alised assessment of the mechanistic influences of the diffusion algorithm on model

output. It must be noted that the diffusion algorithm applies to molecular move-

ment between patches, not within a patch. Each discrete patch, or grid element, is

assumed to have a homogeneous concentration of molecules.

As can be seen in figure 4.3, in the absence of diffusion (rate =0.0) the bac-

terial growth curve still follows the four standard stages expected underin vitro

culture conditions. However, the maximum population size is severely limited due
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to the lack of nutrient transport between patches. This could explain why bacterial

colonies tend to thrive better in conditions of water availability where nutrients are

more readily transported by diffusion. In arid conditions,the lack of nutrient diffu-

sion would be a significant growth-limiting factor, aside from problems associated

with dessication.

When a trace amount of diffusion (rate = 0.001) is applied, the maximum bac-

terial population size increases by 2 - 3 orders of magnitudeover conditions where

diffusion is absent. However, as the diffusion rate is increased the maximum bacte-

rial population size is limited by the total nutrient content (carrying capacity of the

environment). Higher diffusion rates result in the population peaking in a shorter

time, but the carrying capacity remains similar. It can be concluded from this that

environments with high rates of diffusion do not confer an advantage to bacterial

colonies in terms of the overall population sizes they support. However, these con-

ditions may allow the colony to gain a foothold more quickly allowing a critical

mass to be developed which is more resistant to external stresses.

When antibiotic is added to the bacterial cultures, the rateof diffusion in the

environment can have a significant impact on the efficacy of the antibiotic. To in-

vestigate this, the length of time bacterial growth was inhibited (which is a measure

of antibiotic efficacy) was recorded over the range of diffusion co-efficient values

0.001 - 0.2, using kinetic parameters for three common antibiotics: penicillin G,

ampicillin and cephalothin (Fig. 4.4). The results show a significant positive cor-

relation (Pen G: r> 0.992, p< 0.01; Amp: r = 0.993, p< 0.01) between the rate

of diffusion and the inhibition times for penicillin G and ampicillin. However, for

cephalothin the diffusion rate has no effect on the length oftime growth is inhibited

(r = 0.0).

The effect of environmental conditions such as the rate of diffusion can have an
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Figure 4.4: Effect of varying diffusion co-efficient of Fick’s First Law of diffusion
(0.001 - 0.2) on the length of time bacterial growth is inhibited after addition of
antibiotic to the environment. The antibiotic was added (time = 4.4 hours) during
the exponential phase of growth of a population of Type Aβ-lactamase-producing
MRSA. Population size =∼105 agents; environment size = 10002 patches. The
concentration of each antibiotic was: penicillin G (Pen) = 66.9 µg/ml, ampicillin
(Amp) = 69.9µg/ml, and cephalothin (Ceph) = 118.9µg/ml. Cellular and kinetic
input parameters listed in Chapter 3.

important impact on antibiotic treatment outcome. For example, it has been found

that some bacteria can form structured communities of cellssuch as biofilms, where

the rate of diffusion within the colony is significantly reduced [87]. The results

from this computational analysis clearly indicate that a decreased rate of diffusion

can result in reduced antibiotic efficacy, depending on the type of antibiotic, and

therefore increase the bacteria’s survival chances.

Cephalothin, which is unaffected by variations in the diffusion rate, differs from

penicillin G and ampicillin in that it is a poor substrate fortheβ-lactamase enzyme

produced by MRSA bacteria. Penicillin G and ampicillin are both rapidly cleaved

by β-lactamase enzymes secreted into the immediate environment of the bacterial
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cells, and the diffusion rate limits the rate at which the antibiotic is replenished.

For cephalothin, it is more resistant to cleavage byβ-lactamase enzyme and as a

result the local concentration of antibiotic does not decrease significantly. Instead,

the factor that limits the efficacy of cephalothin is the rateof binding to the bac-

terial cells, which is not influenced by the diffusion rate. This situation indicates

how the specific biochemical profile of the antibiotic and itsinteractions with lo-

cal environmental factors can have a significant impact on its reaction to changing

environmental conditions.

Knowledge of how antibiotics react under different conditions could inform

the rational development of drug treatment regimens. For example, when treat-

ing bacterial infections where there is poor transport of antibiotic by diffusion (e.g.

biofilms), the model indicates that the susceptibility of the antibiotic toβ-lactamase

plays a larger role than under normal free-diffusing conditions. This may result in

deviations between the expected behaviour as determined from laboratory experi-

ments and the actual real-world outcome.

4.2.5 Population Size (Inoculum Effect)

The Minimum Inhibitory Concentration (MIC) of an antibiotic is defined as the

minimum concentration of an antibiotic required to inhibitgrowth of a bacterial cul-

turein vitro. Micro-Gen has been used previously to predict the MICs of antibiotics

by inputting relevant kinetic parameters for them [18, 88].The present manuscript

provides a detailed overview of the model structure and parameters used to describe

the bacterial cells and focuses on the effects of changing environmental conditions

and population size on the development of an MRSA colony.

The MIC is an emergent property of the population that results from the in-
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teractions of the individual bacterial agents and antibiotics. However, it is some-

times difficult to relate information from cellular and molecular studies with this

high-level population parameter. The Micro-Gen model provides a good theoreti-

cal framework for bridging this gap of knowledge between fundamental studies at

the individual level and high-level population parameterssuch as the MIC.

Figure 4.6 shows results from simulations investigating the effect of population

size (inoculum effect) on the MICs of a number of commonβ-lactam antibotics

against MRSA. Three types of MRSA bacteria were tested: Type-A (Fig. 4.6A)

and Type-C (Fig. 4.6B)β-lactamase producing strains, and aβ-lactamase-negative

strain (control). The strains are differentiated by their unique kinetic parameters

andβ-lactamase production rates (see Chap. 3). Theβ-lactamase production rates

were estimated as described in chapter 3, and the antibioticintake rate was chosen

as described above. The diffusion rate for the environment was set to 0.1 to ensure

that bacterial growth was not diffusion-limited (see Fig. 4.3).

When the population size is varied by several orders of magnitude the results

indicate that theβ-lactamase status of the bacterial cells is an important contributor

to the inoculum effect on the MIC (Fig. 4.6A, B). There is no clear inoculum effect

associated with cephalothin against either Type-A or Type-C β-lactamase produc-

ing MRSA strains over the range of population sizes tested. This is consistent with

the fact that cephalothin is a poor substrate for either typeof β-lactamase. In the

case of larger population sizes, the total concentration ofβ-lactamase available to

bind and de-activate antibiotic is increased. However, since cephalothin is a poor

substrate for theβ-lactamase, the increased enzyme concentration does not have

a significant impact on the MIC. Rather the binding reaction between cephalothin

and PBP2a in the cell membrane of MRSA is the limiting factor for cephalothin’s

efficacy. It binds poorly to PBP2a, relative to penicillin G and ampicillin, which
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results in a high MIC that remains unchanged over the range ofpopulation sizes

tested.

Penicillin G and ampicillin are better substrates for cleavage byβ-lactamase

enzyme. As a result, the MIC increases in response to higher concentrations of

enzyme in the environment. So even though penicillin G is shown to be more

effective than cephalothin at low population sizes, in the case of larger sizes (>106

bacterial agents) the advantage is negated. Experimental studies of various strains

of β-lactamase producingS. aureushave also shown a significantly larger inoculum

effect for penicillin G compared to cephalothin [89, 90].

The variation in the MIC of an antibiotic with different bacterial population

sizes is an important factor to consider when determining drug treatment regimens.

The stage of development of a bacterial infection and the number of bacteria present

at any given time can vary from patient to patient and over thecourse of a treatment

course. Therefore, it is useful to be able to quantify the impact of these changes on

the response of bacterial colonies to treatment.

4.2.6 β-lactamase Production Rate

Another important parameter that influences the MIC of aβ-lactam drug is theβ-

lactamase production rate. This can vary by several orders of magnitude between

different strains of MRSA. Therefore, it is important to assess the impact of this

parameter on model output. In order to do this, simulations were carried out over

a range of production rate values in order to illustrate the different effects it has

depending on the type of drug used (Fig. 4.7).

The results clearly show that for antibiotics that are sensitive to cleavage byβ-

lactamase, such as penicillin G and ampicillin, there is a strong positive correlation
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between the enzyme production rate and the MIC of the drug (Pen G: r = 0.999,

p< 0.01; Amp: r = 0.998, p< 0.01). On the other hand, cephalothin, which is rela-

tively resistant to cleavage by the enzymes has no correlation between its MIC and

theβ-lactamase production rate (r = 0.0). A more detailed discussion about the ef-

fects of the kinetic parameters on cleavage of antibiotics molecules byβ-lactamase

is presented in the next chapter.

4.3 Conclusions

These initial results indicate that the emergent effects from the population dynamics

can have a dramatic impact on the efficacy of antibiotics. This must be taken into

account in the rational development of drug treatment regimens, as differences in

environmental conditions and bacterial phenotypes may result in varied responses

between individual patients. Micro-Gen provides a good theoretical framework for

investigating these effects in the context of a simulated environment. The agent-

based modelling approach can be used to understand the relationships and complex

sets of interactions taking place between the individual components of the system

and how they contribute to the high-level population dynamics. The value of the

model in making quantitative predictions depends on the availability of good ex-

perimental data about individual bacterial cells. However, it can also be used as

tool for developing a better mechanistic understanding of population dynamics by

varying key parameters and observing how they determine themodel output.
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Figure 4.5: Effect of antibiotic intake rate on log growth curves of simulated MRSA
bacterial agents grown under simulatedin vitro culture conditions. The antibiotic
intake rate was varied over the range 10−10 - 10−5 µM loop−1 to examine its impact
on the length of time bacterial growth is inhibited by the antibiotic. 71.9µg/ml
of Penicillin G (A), 62.9µg/ml of Ampicillin (B) or 119µg/ml of Cephalothin (C)
were added after 4.4 hours of growth, when the simulated bacterial colonies were
in the exponential phase of growth.
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CHAPTER 5

K INETIC STUDIES

5.1 Overview

This chapter documents the results of integrating antibiotic resistance mechanisms

into the bacterial agents, representing MRSA, and analyzing the system dynamics

of their interactions with some commonβ-lactam antibiotics. The aim of these

tests is to quantify the effects of the principal pharmacokinetic parameters ofβ-

lactam antibiotics on treatment outcome, and assess their impact in terms of some

common high-level measures of antibiotic efficacy such as the minimum inhibitory

concentration (MIC).

The complex relationship between the kinetics of drugs and emergent pharma-

codynamic parameters, such as the MIC, is an important area to explore for the

rational development of drug treatment regimens [69]. Thisprovides a basis for

understanding the dynamics involved in the development of antibiotic resistance,

and help to develop strategies to limit its expansion. Micro-Gen represents a good

theoretical framework for analysing thein vitro dynamics of antibiotics interacting

with bacteria, though further work could involve extendingthe model to represent

the more complex dynamics found in thein vivo clinical setting.
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A set of input parameters, summarized in Table 5.3, are configured to represent

the attributes of the bacterial agents and the culture environment. For this study,

the model was configured to represent MRSA bacteria growing in agar plate cul-

ture. Parameters applicable to three types of MRSA bacteriawere used, which are

differentiated by theirβ-lactamase status: type A MRSA and type C MRSA are

named because they produceβ-lactamase enzymes of these respective types. A

β-lactamase-negative strain was also included.

Type A and Type Cβ-lactamase enzymes are distinguished by their kinetic pa-

rameters (kcat/KM ) which are derived from experimental literature (see Table5.3).

They were chosen for this study because they are the most common types ofβ-

lactamase found in MRSA bacteria. A study by Norriset al. (1994) found that

among 50β-lactamase-producing MRSA isolates taken from nine locations across

the U.S.A., 80% expressed type Aβ-lactamase and the remainder expressed type

C. Type B and type Dβ-lactamases are thought to be less common among MRSA

strains [1].

5.2 Minimum Inhibitory Concentration

5.2.1 Overview

Figure 5.1 shows the simulated growth curve of an MRSA bacterial colony in

Micro-Gen. The effect of adding an inhibitory dose (103.1µg/ml) of cephalothin

antibiotic after 3.5 hours of incubation on the growth curveis also shown. The

control culture of MRSA, where no antibiotic is added, displays the characteris-

tic standard growth curve of bacteria grown in nutrient-limited culture conditions

(see chapter 4). The addition of antibiotic during the exponential phase of growth
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Figure 5.1: Effect of antibiotic exposure on simulated log growth curve of MRSA
bacteria in nutrient-limited culture conditions. Cephalothin antibiotic (103.1µg/ml)
added after 3.5 hours of incubation, during the exponentialphase of colony growth.
This results in inhibition of colony growth for a period of time (inhibition time) until
depletion of antibiotic according to its natural half-life, or hydrolysis by enzymes
such asβ-lactamases, allows growth to resume.

causes inhibition of growth for a limited period of time. Thelength of time bacterial

growth is inhibited is important as it determines the recommended dosage regimen

for an antibiotic. It is affected by factors such as the half-life of the antibiotic, and

the action of bacterial enzymes, such asβ-lactamases, which degrade the antibiotic

molecules.

The Minimum Inhibitory Concentration (MIC) was calculatedfrom the model

for a number of commonβ-lactam antibiotics against MRSA, and compared with

real-world results. The MICs are estimated from the model inan analogous way

to the broth dilution test carried out in the experimental environment: a series of

simulations are carried out with varying concentrations ofantibiotic applied. The
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minimum concentration of antibiotic that results in complete inhibition of bacterial

growth for a pre-determined length of time is recorded as theMIC.

Prior to carrying out a simulation to predict the antibioticMIC against a specific

strain of bacteria, theβ-lactamase production rate per second per bacterial agent

must first be estimated by calibrating with a known MIC of an antibiotic (in this

case penicillin G was used for calibration). The process involves predicting the

MIC of penicillin G from the model over a range ofβ-lactamase production rates.

The production rate that gives an MIC equivalent to the experimentally determined

value for penicillin G (in this case Type A MRSA = 72.1µg/ml, Type C MRSA

= 47.9µg/ml) is then used in all future simulations for that particular strain [1].

Theβ-lactamase production rate must be estimated on a strain by strain basis due

to potential significant variation between strains. For this study, the estimatedβ-

lactamase production rate for Type A MRSA was 3.28 x 10−7 µM s−1 per bacterial

agent and for Type C it was estimated to be 1.62 x 10−7 µM s−1 per agent.

5.2.2 Predicted MICs

Figure 5.2 contains the predicted MIC values for a number of common antibiotics

compared with results from experimental studies publishedin the scientific litera-

ture (table 5.1) [2, 1]. The MICs of the antibiotics were calculated for three differ-

ent types of MRSA bacteria:β-lactamase producing strains (Type A, Type C), and

a β-lactamase negative strain. All other parameters, including the PBP2a kinetic

parameters, were maintained constant across the three types of bacteria. Overall,

there is a good correspondence between the predicted valuesfrom Micro-Gen and

the real-world situation.

The most notable deviation between the predicted and experimentally deter-
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Figure 5.2: Predicted versus experimentally determined geometric mean
MIC ±SEM (µg/ml) of penicillin G, ampicillin and cephalothin antibiotics against
three different types of MRSA. Experimentally determined MICs forβ-lactamase-
positive (Type A and C) strains are from Norriset al. (1994). Experimentally
determined MICs forβ-lactamase-negative strains are from Malouinet al. (2003).
Predicted MICs are derived from triplicate simulations with the geometric mean
MIC ±SEM (µg/ml) displayed. Where SEM = 0, no error bar is displayed. (A)
= Type A β-lactamase producing MRSA; (C) = Type Cβ-lactamase producing
MRSA; (-) = β-lactamase-negative MRSA.

mined MIC values is when comparing the results for ampicillin antibiotic against

Type Aβ-lactamase producing bacteria (53.5±2.3µg/ml versus 89.3±17.0µg/ml,

respectively). This may be due to intra-species variation in the kinetic parameters

for MRSA or differences in experimental methods for obtaining these values. The

second order rate constant for the PBP2a-ampicillin reaction (9.0 M−1 s−1) used

in the model was derived from experimental tests by Graves-Woodward & Pratt

(1998). However, another study by Fudaet al. (2004) has calculated the value to be

5.0 M−1 s−1 for ampicillin. When the rate constant from Fudaet al. for ampicillin
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Table 5.1: Results from comparison of predicted versus experimentally determined
MICs of penicillin G, ampicillin and cephalothin antibiotics (Ab) against three dif-
ferent types of MRSA. Geometric mean MIC±SEM (µg/ml) given. Experimen-
tally determined MICs are from Norriset al. (1994) and Malouinet al. (2003)
[1, 2].

Ab
Type A Type C No Lac

Pred Exp Pred Exp Pred Exp
PEN 68.3±2.2 72.1±7.5 48.0±2.7 47.9±5.7 9.2±0.0 16±0.0
AMP 52.4±3.2 89.3±17 51.6±4.7 50.5±6.2 9.6±0.0 16±0.0
CEPH 103.1±0.0 91.3±8.2 103.1±0.0 83.9±8.9 103.1±0.0 128±0.0

was used into the model instead, it outputted a predicted MICof 96.0±3.9µg/ml,

which is closer to that recorded by Norris (89.3±17.0µg/ml).

Figure 5.3 show how the predicted MIC of an antibiotic depends greatly on the

experimental estimates of the low-level kinetic parameters. This illustrates how

variation in parameters at the molecular level can have a significant impact on over-

all treatment response. It is therefore important to obtainreliable, accurate esti-

mates of the pharmacokinetic parameters for the antibiotics and bacterial strains

being investigated, in order to make conclusions about the emergent dynamics of

the system. There also may be significant natural variation between bacterial iso-

lates recovered from different locations or under different conditions.

The second-order rate constants calculated by Graves-Woodward & Pratt (1998)

were chosen over Fudaet al. (2004) because rate constants for all three antibiotics

used in this study were available, while Fuda’s paper did notcontain kinetic values

for penicillin or cephalothin. Due to variation in experimental techniques between

different studies it is important to obtain parameter estimates from a single source

for consistency.

Figure 5.4 contains the results from a broader analysis of the MICs of a number
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Figure 5.3: Comparison of predicted MICs of ampicillin using kinetic parameters
derived from a study by Graves-Woodward & Pratt (1998) or a study by Fudaet
al. (2004). Experimentally determined MICs are from Norriset al. (1994) and
Malouinet al. (2003). Predicted MICs are derived from triplicate simulations with
the geometric mean MIC±SEM (µg/ml) displayed. (A) = Type Aβ-lactamase-
producing MRSA; (C) = Type Cβ-lactamase producing MRSA; (-) =β-lactamase-
negative MRSA.

of antibiotics compared with experimental estimates of MICs from the biological

literature (table 5.2) [1 - 8]. For these antibiotics, kinetic parameters were only

available for the PBP2a-antibiotic binding reaction and not for theβ-lactamase re-

action. Therefore, only aβ-lactamase-negative MRSA strain could be represented

in the simulations. Nonetheless, it is useful to be able to compare the predicted

MICs with those from the literature to assess the validity ofthe model across a

broader range of antibiotics.

The predicted MICs from Micro-Gen match closely the experimental MICs

across a wide selection ofβ-lactam antibiotics, comprising cephalosporins and

penicillins, including methicillin, and imipenem, a carbapenem (β-lactam) antibi-
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Figure 5.4: Comparison of predicted MICs and experimentally determined MICs
for eleven commonβ-lactam antibiotics versusβ-lactamase-negative MRSA bac-
teria. The experimental values represent the arithmetic means (±SEM) of the min-
imum and maximum MIC values found in the literature [1 - 8]. Where SEM = 0, no
error bar is displayed.

otic. There is some degree of natural variation in the experimentally estimated

MICs, particularly for the cephalosporins, but overall there is a clear trend in the

data that matches closely with the predictions from Micro-Gen. The experimen-

tal MICs were chosen from strains of MRSA that were shown to beβ-lactamase-

negative or where aβ-lactamase inhibitor had been administered in conjunction

with the antibiotic.

5.2.3 Discussion

The results indicate that the model represents a robust toolfor predicting the MIC

of an antibiotic against various different strains of bacteria based on low-level bio-
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Table 5.2: Results from comparison of predicted MICs and experimentally deter-
mined MICs for eleven commonβ-lactam antibiotics versusβ-lactamase-negative
MRSA bacteria. The minimum and maximum MIC values found in a review of a
subset of the experimental literature are recorded [1, 2, 3,4, 5, 6, 7, 8].

Antibiotic Predicted Exp MIC
MIC Min Max

Cefotaxime 506 256 512
Cefepime 151 4 128
Ceftazidime 117 128 256
Cephalothin 103 64 128
Cefoxitin 75.7 32 256
Cephaloridine 29.6 16 64
Penicillin 9.2 16 16
Ampicillin 9.61 16 16
Oxacillin 22.9 8 64
Imipenem 32.1 32 32
Methicillin 204 250 250

chemical/kinetic data about the antibiotic [77, 78, 20, 19]. Some degree of variation

from the experimental results is to be expected due to differences in the methods

and conditions used in the experimental studies to calculate the MICs and the ki-

netic parameters for the bacteria. Also, it must be noted that the experimental results

were derived from cultures grown suspended in three-dimensional liquid medium,

whereas Micro-Gen represents cultures growing in two-dimensional space. This

may also contribute to some of the variation between the predicted and experimen-

tally determined results.

Nevertheless, taking these factors into account, the high degree of correspon-

dence between the predicted and experimental MIC results isencouraging. These

results were obtained without attempting to ‘fit’ the kinetic input parameters to the

MIC results. The only parameter, which influences the kinetics of the bacterial
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agents, that required to be fitted was theβ-lactamase production rate. However,

the results in figure 5.4 represent aβ-lactamase-negative strain, and thus the fit-

ting step did not have to be carried out in this case. Therefore, the predicted MICs

were purely an emergent property of the inputted kinetic parameters for the PBP2a-

antibiotic binding reaction. There was still a close quantitative agreement between

the experimental and simulation results even in this scenario.

The Minimum Inhibitory Concentration (MIC) of an antibiotic is a common

high-level measurement for assessing and comparing the efficacies of different an-

tibiotics during the rational development of treatment regimens. These results in-

dicate that a global parameter (MIC) for a bacterial colony can be successfully

predicted by inputting parameters at the cellular/molecular level. This affords a dif-

ferent perspective on the factors that lead to a particular MIC being associated with

an antibiotic against a specific strain of bacteria. The MIC can be de-constructed to

investigate the contributions of different cellular parameters on it.

It must also be noted that the method for calculating the MICsof antibiotics

experimentally is limited in its precision compared to computational predictions.

For example, the experimental MICs derived from Norriset al. (1994) were calcu-

lated by testing two-fold dilutions of antibiotics rangingfrom 2 - 2,048µg/ml and

calculating geometric means from triplicate tests [1]. This necessarily constrains

the precision of the results, which may lead to some of the variation between the

predicted MICs and the experimental results. The level of precision of the Micro-

Gen model’s predicted MICs can be controlled by the user by choosing the amount

of different antibiotic concentrations to test. In the caseof this study, incremental

antibiotic concentration increases of 20% were used. Although greater precision

can be obtained from experimental results by similarly testing more concentrations

of antibiotic, due to logistical constraints often only two-fold dilution steps are used
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in the broth dilution process.

5.3 Kinetic Parameters

The pharmacokinetic parameters dictating the interactions of the antibiotic

molecules withβ-lactamase enzymes in the environment and with penicillin-

binding protein 2a in the bacterial cell are the key determinants of antibiotic efficacy

in the model. In order to explore the impact of these parameters on treatment out-

come, a number of simulations were carried out over a range ofparameter values.

Figure 5.5 gives a general overview of how the Minimum Inhibitory Concentration

of a drug is influenced by the kinetic parameters.

It can be seen that thek2/Kd ratio, which is a measure of the antibiotic effi-

cacy at inhibiting PBP2a function, has the most pronounced impact on the MIC

of an antibiotic. The relative contribution of theβ-lactamase reaction is less pro-

nounced. It does have a significant impact at higher values ofkcat/KM higher than

107. However, in nature the catalytic efficiencies ofβ-lactamase enzymes have gen-

erally been found to be<107. For example, thekcat/KM values for type A MRSA

β-lactamase range from 3.3 x 106 M−1 s−1 against penicillin G to 2.2 x 103 M−1 s−1

against cephalothin. There may be some biological/physical constraints that limit

the development of more catalytically efficientβ-lactamase enzymes, despite the

clear fitness advantage they would produce in the presence ofβ-lactam antibiotics.

The results in Figure 5.5 indicate that there would be a strong selective advan-

tage for the evolution of PBP2a variants with reducedk2/Kd values, when exposed

to antibiotics over prolonged periods of time. To a certain extent this has been the

case, such as in the case of methicillin antibiotic which hasbeen shown to have

a k2/Kd value as low as 0.39 versus PBP2a [78]. However, in the case ofthe β-
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Figure 5.5: Surface plot of predicted Minimum Inhibitory Concentrations ofβ-
lactam antibiotics over range of values forkcat/KM andk2/Kd. kcat/KM is a measure
of the catalytic efficiency ofβ-lactamase enzyme at cleaving antibiotic molecules.
k2/Kd is a measure of antibiotic efficacy at inhibiting PBP2a function.

lactamase-sensitive antibiotic penicillin G this value is12.0 [78]. These differences

may be due again to different biological constraints on the evolution of resistance

and/or differences in the patterns of exposure to the antibiotics.

Figure 5.6 represents another way of viewing the data recorded in figure 5.5. In

order to more clearly visualise the impact of theβ-lactamase reaction kinetics on the

MIC, the data has been normalised to represent the relative MICs at different values

of kcat/KM . It can be seen that bacterial strains with a lowerk2/Kd value respond

poorly to increases in thekcat/KM . For example, with ak2/Kd value of< 0.24, there

is no visible increase in the MIC over the range ofkcat/KM values tested. Examples

of antibiotics which might exhibit this behaviour are the cephalosporin antibiotics,
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as well as imipenem and methicillin.

This indicates that there would not be significant selectivepressure to evolve

more efficientβ-lactamases when thek2/Kd value for the PBP2a reaction is low.

This agrees with experimental studies of several types ofβ-lactamase enzymes

from MRSA bacteria that have been shown to cleave cephalosporin antibiotics (low

k2/Kd) poorly relative to penicillin G [19]. The fact that they have not evolved

greater specificities for cephalosporin antibiotics may bebecause there would be

little or no significant fitness advantage conferred. On the other hand, there would

be a clear selective advantage for strains of MRSA with higher catalytic efficiencies

against penicillin G.

The results in figure 5.7 display the impact of changingk2/Kd on the MIC output.

There is a clear linear relationship between the logk2/Kd and the log relative MIC,
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with the kcat/KM parameters influencing the slope of the line. This indicatesthat

there is selective pressure to evolve PBPs with a lowerk2/Kd value in the presence

of β-lactam antibiotics. This is to be expected since the PBP2a binding reaction

is crucial for the mode of action ofβ-lactam antibiotics. The change in the MIC

is inversely proportional to the change in thek2/Kd when the value ofkcat/KM is

<105. For example, with akcat/KM value of 1.64 x 105, reducing thek2/Kd value

from 1000.0 to 0.06 (16,393-fold decrease) results in a 15,319-fold increase in the

MIC.

In the following sections, a more detailed examination of the effect of the kinetic

parameters on survival in the presence of antibiotics will be carried out with refer-

ence to the antibiotics penicillin G, ampicillin and cephalothin, for which detailed

experimental estimates of their kinetic parameters versusPBP2a and two important
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types ofβ-lactamase are available.

5.3.1 Catalytic Efficiency ofβ-lactamase

The effects of Type A and Type Cβ-lactamases on the efficacies of penicillin G,

ampicillin and cephalothin were examined by exploring the relationship between

the length of time growth was inhibited by the antibiotics and the catalytic efficiency

(kcat/KM ) of the enzyme at hydrolytically cleaving theβ-lactam ring (Fig. 5.8). The

inhibition time of an antibiotic is a convenient measure of antibiotic efficacy.

The catalytic efficiencies of theβ-lactamase enzymes were varied over the range

102 - 1010 M−1 s−1 and the relative length of time growth was inhibited by each an-

tibiotic plotted. The length of time growth is inhibited by an antibiotic is displayed

relative to its inhibition time when the default (experimentally estimated) kinetic

parameter values are used as input (Fig. 5.8). There are strong negative correla-

tions between logβ-lactamase efficiency (kcat/KM ) and inhibition time for both

penicillin G and ampicillin (r<−0.9, p< 0.01), and a weaker but still significant

(p< 0.01) correlation with cephalothin inhibition time (Type A: r =−0.803, Type

C: r =−0.774). Correlation analyses to calculate the Pearson correlation coefficient

(r) and two-tailed significance level (P) were carried out using SPSS statistical anal-

ysis software v11.0 (SPSS Inc., Chicago, IL, USA).

When correlation analyses are restricted to the smaller, but more biologically

realistic, range of catalytic frequencies 102 - 106 M−1 s−1 there is no correlation

between inhibition time and logkcat/KM for cephalothin over this range (r = 0.0).

On the other hand, for penicillin G and ampicillin there are still significant neg-

ative correlations present (r< -0.85, p< 0.01). These results agree qualitatively

with tests comparing antibiotic administered on its own andin conjunction with a
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β-lactamase inhibitor sulbactam [1]. The inhibitor sulbactam competes with an-

tibiotic molecules for binding toβ-lactamase, effectively reducing the rate of hy-

drolytic activity of the enzyme against the antibiotic molecules (i.e. equivalent to

a reducedkcat/KM ). Norris et al. (1994) recorded a significant increase in antibi-

otic efficacy for penicillin and ampicillin in the presence of β-lactamase inhibitor,

whereas cephalothin was unaffected.

5.3.2 PBP2a Interactions

The other major mechanism of resistance characteristic of MRSA bacteria is the

expression of PBP2a protein in the cell membrane, which has decreased binding

affinity for β-lactam antibiotics. The role of PBP2a binding efficiency ininfluenc-

ing the outcome of treatment was also investigated across the three different types of

MRSA strains. The second order rate constant (a measure of inhibition efficiency)

for the reaction between antibiotic and PBP2a in MRSA was varied over a range of

several orders of magnitude for the antibiotics (Fig. 5.9).

There is a strong positive correlation between the binding efficiency of PBP2a

and the inhibition time for all the antibiotics against the three types of MRSA

(r < 0.9 and p< 0.01). However, there is a steeper increase in the inhibition time

of cephalothin relative to penicillin G and ampicillin whentreating the Type A and

Type Cβ-lactamase producing strains (up to 4-fold difference in slope of fitted lin-

ear regression lines). This difference is much less pronounced in the case of the

β-lactamase-negative strain (< 2-fold difference in slope).

Once again, these results are in qualitative agreement withexperimental find-

ings comparing MRSA bacterial strains (lowk2/Kd) with methicillin-susceptibleS.

aureus(MSSA) strains (highk2/Kd) [3, 2]. Miller et al. (2005) showed a signifi-
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cant increase in cephalothin efficacy between the MRSA and MSSA strains which

agrees with the results from Figure 5.9. The results from Malouin et al. (2003)

showed no significant difference in the antibiotic efficacies for penicillin/ampicillin

when comparingβ-lactamase-positive MRSA and MSSA strains, but there was a

significant increase when comparingβ-lactamase-negative strains. This is also in

agreement with Micro-Gen’s predictions from Figure 5.9. The model didn’t show

a notable increase in penicillin/ampicillin efficacy forβ-lactamase-positive strains

unlessk2/Kd was increased>104-fold over their experimentally estimated natural

values [78].

5.3.3 Discussion

For both type A and type Cβ-lactamases, if the catalytic efficiency against

cephalothin is varied by up to three orders of magnitude overthe current natural

level, there is little discernible difference to the inhibition time (<1% difference).

This could indicate why both Type A and Type Cβ-lactamases have relatively low

rates of hydrolysis of cephalothin, compared to penicillinG: bacterial cells express-

ing more efficientβ-lactamase against cephalothin would not have a significantevo-

lutionary fitness advantage. By contrast, for penicillin G and ampicillin, over the

same range of catalytic efficiencies, there is a steep decrease in the inhibition times

that strongly correlates with the catalytic efficiency. This suggests there would be

positive selective pressure for MRSA strains expressing more catalytically efficient

β-lactamases when exposed to penicillin G or ampicillin overextended periods of

time.

Figure 5.9 displays the results of varying the second order rate constant (k2/Kd)

of the reaction between antibiotic and PBP2a in the cell membrane. As this value
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is increased, the inhibition times of the antibiotics also increase, as expected since

the damage they inflict on the bacterial cell is proportionalto their ability to bind

to and inhibit PBP2a function. However, the slope of the curve for cephalothin is

significantly steeper than either penicillin G or ampicillin when strains of MRSA

expressing either Type A or Type Cβ-lactamase are tested.

This indicates that the PBP2a status of a bacterial cell may have a more marked

impact on the clinical outcome of cephalothin treatment than penicillin G or ampi-

cillin treatment, inβ-lactamase expressing strains. This agrees with experimental

studies which have shown that the MICs for penicillin/ampicillin are the same in

either MRSA (PBP2a-positive, lowk2/Kd) or MSSA (PBP2a-negative, highk2/Kd)

strains ofβ-lactamase-producing bacteria. By contrast, there is a marked difference

recorded experimentally (>100-fold) in the MIC of cephalothin between PBP2a-

positive and PBP2a-negative strains [3].

When aβ-lactamase-negative strain of MRSA is tested, on the other hand, the

profiles of penicillin G and ampicillin match cephalothin more closely, i.e. efficacy

is inversely proportional to PBP2a binding affinity. This isbecause theβ-lactamase

enzyme is not present to limit the efficacies of the antibiotics. Since theβ-lactamase

status and production rate can vary considerably across different strains of MRSA,

it is important to be able to predict quantitatively how these differences will affect

the treatment response in a particular infection.

5.4 Conclusions and Future Work

Traditional methods of measuring antibiotic efficacy such as the Minimum In-

hibitory Concentration are insufficient for understandingthe complex dynamics that

lead to the rapid development and spread of antibiotic resistance within bacterial
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populations. However, the ability to investigate the relationship between individual

molecular components of the system and the overall treatment outcome can lead to

a better understanding of how to optimize antibiotic performance and predict treat-

ment outcome. Micro-Gen can also be used to indicate evolutionary pathways or

dead-ends that may exist for bacteria in response to antibiotic exposure.

Future work will include using the model to investigate the system dynamics of

combination therapy with multiple classes of antibiotic. It can also be used to test

hypothetical scenarios by varying the parameters of existing antibiotics to explore

how potential novel compounds might act. It is a useful tool for the rapid screening

of drug compounds against a diverse range ofS. aureusstrains in simulated culture

conditions. The agent-based approach is also suitable for modelling the evolution

of antibiotic resistance over time by incorporating genetic components into the bac-

terial agents. This would allow both the temporal and spatial dynamics of antibiotic

resistance development to be examined.

Another important future aim of the Micro-Gen project is to modelβ-lactamase-

dependent pro-drug delivery systems. Under these systems,a substrate-like pro-

drug molecule containing theβ-lactam ring structure undergoes therapeutic activa-

tion catalysed byβ-lactamases to achieve selective release of a cytotoxic antimi-

crobial agent [79, 80]. Micro-Gen would be a useful tool to examine the dynamics

of this system of activation and assess its therapeutic potential from a theoretical

standpoint. This will be the subject of the next chapter of this thesis.
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Table 5.3: Inputted parameter values for simulations of antibiotic interactions with
MRSA bacteria in Micro-Gen model.b.u.= biomass units;loop= program loop
(∼2 s in real time)

Type of Entity Parameters (units) Input Value

Environment

Patch area (b.u.) 20000

Patch nutrient level (b.u.) 80000

Diffusion co-efficient 0.1

Bacterial Cell

Generation time (min) 29

Threshold for division (b.u.) 10000

Nutrient intake (b.u. loop−1) 10.0

Survival cost (b.u. loop−1) 0.2

Stationary phase relative metabolic rate 0.2

Lag phase length (min) 63

β-lactamase production rate (µM s−1):

Type A 3.28 x 10−7

Type C 1.62 x 10−7

β-lactamase production cost (b.u.) 0.1

β-lactamase

Molecular weight (Da) 30000

Half-life (s) 53640

kcat (s−1): Type A Type C

Penicillin G 171.0 210.0

Ampicillin 308.0 355.0

Cephalothin 0.015 0.095

KM (µM): Type A Type C

Penicillin G 51.1 55.9

Ampicillin 255.0 122.0

Cephalothin 6.8 5.2
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Table 5.4: Inputted kinetic parameter values (k2, Kd), molecular weight (MR)
and half-life parameters for simulations of antibiotic interactions with penicillin-
binding protein 2a (PBP2a) in MRSA bacteria [1 - 8]. For diagrams of the chemical
structures of these antibiotics see figures 5.10 & 5.11

Antibiotic k2 Kd MR Half-life

(s−1) (µM) (Da) (s)

Cefotaxime 0.00035 586 455.47 3600

Ceftazidime 0.001 671 546.58 6840

Cephalothin 0.00115 586 396.44 1800

Cefoxitin 0.001162 586 427.45 2520

Cefepime 0.0015 1618 480.56 7200

Cephaloridine 0.0024 586 415 3660

Oxacillin 0.0016 180 401.44 1800

Ampicillin 0.0047 495 349.41 3600

Methicillin 0.0083 16900 380.42 3600

Penicillin G 0.185 15400 334.39 2520

Imipenem 0.0017 603 299.35 3600
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A. Cefotaxime B. Ceftazidime

C. Cephalothin D. Cefoxitin

E. Cefepime D. Cephaloridine

Figure 5.10: Diagrams of the chemical structures of the cephalosporin antibiotics
listed in Table 5.4. Structures derived from the on-line cheminformatics database
DrugBank [57].
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A. Oxacillin B. Ampicillin

C. Methicillin D. Penicillin G

E. Imipenem

Figure 5.11: Diagrams of the chemical structures of the penicillin antibiotics,
oxacillin, ampicillin, penicillin G and methcillin, and the carbapenem antibiotic,
imipenem (see Table 5.4). Structures derived from the on-line cheminformatics
database DrugBank [57].
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CHAPTER 6

PRO-DRUG DELIVERY SYSTEM

6.1 Overview

One of the strengths of the computational approach towards studying bacteria-drug

interactions is the ability to model hypothetical scenarios and explore how potential

novel compounds might act. For example, there has been recent interest in alterna-

tive drug delivery systems to improve the specificity and efficacy of anti-microbial

drugs. One such example, is theβ-lactamase dependent enzyme-catalysed thera-

peutic activation (ECTA) pro-drug delivery system. This approach attempts to ex-

ploit the presence ofβ-lactamase enzymes in many species of pathogenic bacteria

to deliver inactive precursors of harmful anti-microbial agents which specifically

target these bacteria.

The basic premise of this approach is that a substrate-like pro-drug molecule

containing aβ-lactam promoiety structure is administered to treat an infection [91].

When it comes into contact withβ-lactamase producing bacteria, it undergoes ther-

apeutic activation by cleavage of itsβ-lactam ring which causes selective release

of a cytotoxic anti-microbial agent [80, 79, 92]. Therefore, the presence ofβ-

lactamase enzymes effectively decreases the survival chances of bacterial cells,
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resulting in negative selective pressure for expression ofthese genes. This con-

trasts with the current situation where many commonβ-lactam drugs are rendered

ineffective by the action ofβ-lactamases.

The theory of aβ-lactamase dependent pro-drug delivery system representsa

potentially promising approach for treatingβ-lactamase-producing bacterial infec-

tions. However, there are complex system dynamics involvedthat influence the ef-

fectiveness of this technique. For this reason, it is usefulto carry out computational

investigations to understand how factors such as the kinetics of theβ-lactamase/pro-

drug interaction influence treatment outcome.

Micro-Gen is well suited for such investigations as it incorporates a model of the

kinetics ofβ-lactam ring cleavage in antibiotic molecules. By reversing the effect of

this reaction, whereby the drug is rendered active (not inactive) by this interaction,

some interesting preliminary insights can be made into the type of system dynamics

that would be expected to take place in a pro-drug delivery system.

6.2 System Dynamics of Pro-Drug Delivery System

The pro-drug delivery system differs from the traditional method of applying a rel-

atively high dose of an active anti-microbial agent. Traditional antibiotics such as

penicillin G or cephalothin are administered in a pharmacologically active form,

which then degrades over time according to its natural half-life or is inactivated

by enzymes such asβ-lactamases. A pro-drug, on the other hand, can be a rela-

tively inert molecule which only becomes pharmacologically active after a specific

activation event takes place.

It is possible that the pro-drug could have some pharmacological activity itself.

For example, in aβ-lactamase-dependent pro-drug delivery system, theβ-lactam
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ring structure in the pro-drug could interact with the penicillin-binding proteins in

the bacterial cell to inhibit cell growth. However, for the simulations carried out

here, the pro-drug is assumed to be in an inert, pharmacologically inactive form.

This is in order to assess the effectiveness of this deliverysystem without intro-

ducing any ambiguities into the system due to direct antimicrobial activity. The

simulated pro-drug only becomes active after interaction and successful cleavage

by aβ-lactamase enzyme.

As a result of this, when the pro-drug is added to the system there is initially no

active anti-microbial agent present (no contamination through non-selective activa-

tion, such as chemical hydrolysis, is assumed). As described in chapter 3, when a

bacterial cell interacts with aβ-lactam ring-containing molecule,β-lactamase en-

zyme production is triggered. This starts at a low rate whichincreases exponentially

until the full production rate is reached after about 80 minutes [59]. During this

period, there is a gradual increase in the concentration of activated antimicrobial

agents in the vicinity of the bacteria. When the concentration of active drug ex-

ceeds a threshold for activity then bacterial growth is inhibited. There is therefore

a time delay between the addition of a pro-drug and the accumulation of sufficient

activated drug molecules to inhibit growth. This does not occur with traditional

antibiotics, which immediately bind to bacterial cells upon first contact according

to their kinetic rules.

Figure 6.1 shows a sample concentration curve for activatedanti-microbial

agent when it is added in pro-drug form to a simulated colony of MRSA (input

parameters listed in Table 6.2). There is a gradual increasein the active drug com-

pound until it crosses a certain threshold to cause inhibition of bacterial growth

(0.6 - 0.8µg/ml). Figures 6.1 also shows the effect of adding the activeantimi-

crobial agent directly (not in pro-drug form) at a concentration (0.8µg/ml) that is
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Figure 6.1: Comparison of activities of hypothetical active antibiotic applied di-
rectly or in pro-drug form. Two simulations were carried out: one with 1.8µg/ml
of pro-drug administered at time = 3.3 hours, and the other with 0.8µg/ml of pre-
activated anti-microbial agent (antibiotic) added at time= 3.3 hours. There is a clear
delay in inhibition of bacterial growth by the pro-drug due to the requirement of a
β-lactamase-mediated activation step.
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above the threshold for inhibition of bacterial growth. There is a threshold in the

concentration of the active drug compound that must be reached to inhibit bacterial

growth, which is dependent on the pharmacological properties of the activated drug

molecule. This results in a delay, due to theβ-lactamase-mediated activation step,

between administration of the pro-drug and inhibition of bacterial growth when

there is a sufficient concentration of activated drug available.

6.2.1 Kinetics Studies

The speed and efficiency of activation of the pro-drug is an important factor for

determining the efficacy of a pro-drug delivery system. A number of simulations

were carried out to examine the effects of several differentparameters on the acti-

vation of the pro-drug and inhibition of bacterial growth bythe activated product.

The same cellular parameters for representingβ-lactamase-producing MRSA that

were used in previous chapters were applied in the simulations here (Table 6.2).

A hypothetical penicillin-based pro-drug was simulated, i.e. the kinetic parameter

values (kcat/KM ) for penicillin G were used to define the interaction betweenβ-

lactamases and the pro-drug molecules. The kinetic values for penicillin G were

chosen because this represents a situation where theβ-lactamase enzymes have a

high catalytic efficiency versus the sample pro-drug. This represents an optimal

situation in order to assess the potential of this approach.

The active drug agent that arises from cleavage of the hypothetical penicillin-

based pro-drug has kinetic parameters (k2/Kd) which determine the rate of binding

to the bacterial cell (Table 6.2). Although the same parameters (k2/Kd) that were

used to represent binding of aβ-lactam antibiotic to PBP2a in the bacterial cell are

used, this does not mean that the activated antimicrobial agent represents aβ-lactam
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Figure 6.2: Effect of catalytic efficiency (kcat/KM ) of β-lactamase enzyme on min-
imum inhibitory concentration (MIC) of pro-drug. Three different pro-drugs are
graphed which differ by the rate of binding of their activated anti-microbial agent
to the bacterial cell (k2/Kd of activated anti-microbial agent varied between 62.5 and
1000 M−1 s−1).

antibiotic. These parameters are simply used because they are a convenient way of

carrying out initial modelling experiments and visualise their outcomes. The spe-

cific target of the active drug is not specified. For the purposes of this investigation

this is sufficient since the aim of the study is to assess the pro-drug delivery system

rather than obtain a quantitative estimate of the efficacy ofa specific pro-drug. This

would require the availability of the kinetic parameters related to the interaction of

the activated antimicrobial agent with its specific target in the bacterial cell. Please

note that since the activated drug is assumed to lack theβ-lactam ring structure, it

is not subject to cleavage and re-inactivation byβ-lactamases.

Figure 6.2 shows the results of experiments investigating the effect of the ki-
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netic parameters on the minimum inhibitory concentration (MIC) of the penicillin-

based pro-drug. Three hypothetical variations of the pro-drug were investigated,

which differed by the rate of binding of the activated anti-microbial agent to the

bacterial cell (k2/Kd = 62.5, 250, or 1000M−1 s−1). The catalytic efficiency of theβ-

lactamase enzyme (kcat/KM ) at cleaving and activating the pro-drug was assessed by

varying over a range of 105 - 108 for each pro-drug variant. As would be expected,

higher values for the catalytic efficiency result in a lower MIC for the pro-drug.

The pattern in Figure 6.2 is the reverse of the trend seen in Figure 5.6 for tra-

ditionalβ-lactam antibiotics. This is one of the reasons why there is interest in the

β-lactamase-dependent pro-drug delivery system. It would be expected that admin-

istration ofβ-lactamase-dependent pro-drugs could lead to evolutionary selective

pressure opposed to the current selective pressure exertedby β-lactam drugs.

However, it must be noted that for high catalytic efficiencies there is a leveling

of the rate of decrease in the MIC (Fig. 6.2). This fitness “plateau” could negate

the selective advantage of bacteria producingβ-lactamases with lower catalytic ef-

ficiencies. For example, in Figure 6.2, there is a less than 50% decrease in the

MIC above akcat/KM value of approximately 106. On the other hand, Figure 5.6

shows that increasing thekcat/KM above 106 for activeβ-lactam antibiotics (non

pro-drugs) results in a significant fitness advantage (up to 7-fold increase in MIC).

The dynamics between the negative selective pressure from pro-drugs and pos-

itive selective pressure fromβ-lactam antibiotics would be an important factor to

consider when assessing the possible evolution of drug resistance in bacteria in

response to these two therapeutic strategies. However, thecomplex interplay of

biophysical, pharmacokinetic, pharmacological and epidemiological factors which

would contribute to this are beyond the scope of this study. Nevertheless, this mod-

elling approach is useful for developing theories about howmolecular parameters
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may contribute to the dynamics observed.

6.2.2 Half-Life

One of the most important parameters that limits the efficacyof both traditional

antibiotics and novel drug candidates such as pro-drugs, isthe half-life of the

molecule. However, as demonstrated in Chapter 4, the impactof this parameter

can vary substantially depending on the type of antibiotic used. For example, the

efficacy of penicillin G was predicted to be relatively resistant to changes in its

half-life compared to cephalothin (Fig. 4.2). Since the half-life of a molecule can

vary dramatically depending on local environmental conditions, it is important to

determine its influence in order to attempt to predict treatment success.

For this reason, computational analyses were carried out topredict the im-

pact of this parameter on the pro-drug delivery system (Fig.6.3). The half-life

for the penicillin-based hypothetical pro-drug was variedbetween 16 minutes and

2.8 hours, and the growth curve of the bacterial population plotted along with the

concentration curve of activated anti-microbial agent. Ascan be seen in the graphs,

there is a certain threshold above which the concentration of activated drug must

cross before inhibition of bacterial growth is observed (inthis case, the threshold is

approximately 0.8µg/ml).

With a half-life of ≤16 minutes, the concentration of activated anti-microbial

agent never exceeds the threshold required for growth inhibition (Fig. 6.3A-B).

Therefore, the bacterial population follows the standard growth curve, eventually

entering the stationary phase due to nutrient limitations.However, when the half-

life of the pro-drug is increased to 1.4 hours or greater, then the required concentra-

tion of active drug compound is reached and the length of timegrowth is inhibited
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is determined by the rate at which this compound degrades over time.

The half-life of a pro-drug is therefore a very important parameter when deter-

mining its efficacy againstβ-lactamase-producingS. aureusbacteria. This system

is particulary sensitive to the half-life parameter because of the time delay between

administration of the pro-drug and activation of sufficientquantities of active agent

to inhibit growth. The length of time that the drug inhibits bacterial growth is also

directly influenced by the activated drug’s own half-life.

6.2.3 Diffusion Rate

The impact of diffusion on the activity and dynamics of the pro-drug delivery sys-

tem was also investigated. This is an important parameter toassess because the pro-

drug delivery system depends on the targeted release of active anti-microbial agents

in the close vicinity of bacterial cells. Micro-Gen does notrepresent the complex

flow dynamics experienced in thein vivo situation. However, the implementation

of an algorithm based on Fick’s First Law of diffusion allowssome insights to be

obtained on the role of diffusion dynamics in the system (seechapter 3).

Figure 6.5 shows the impact of varying the rate of diffusion in the environment

on the activation and efficacy of a penicillin-based pro-drug. The rate of diffusion

was varied by modifying the user-defined diffusion coefficient (D) for Fick’s First

Law of diffusion (see Fig. 3.1). This is a system-level parameter that alters the rates

of diffusion of all the molecules (pro-drug, active drug,β-lactamase and nutrients)

in the environment, see Chap. 3. Higher values correspond toa more fluid/dynamic

environment whereas lower values result in a more viscous/inert environment. The

results from these simulations indicate that the rate of diffusion has an important

influence on the availability of activated pro-drug in the vicinity of the bacterial

119



A.

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 5 10 15 20 25 30

Time (hours)

N
o

. 
o

f 
B

a
c
te

ri
a

0

0.5

1

1.5

A
c
ti

v
e
 A

b
 C

o
n

c
. 

(  
g

/m
l)

Bac (HL = 16 min) Ab (HL = 16 min)

B.

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 5 10 15 20 25 30 35 40

Time (hours)

N
o

. 
o

f 
B

a
c
te

ri
a

0

0.5

1

1.5

A
c
ti

v
e
 A

b
 C

o
n

c
. 

(  
g

/m
l)

Bac (HL = 1.4 h) Ab (HL = 1.4 h)

C.

1.0E+01

1.0E+02

1.0E+03

1.0E+04

1.0E+05

1.0E+06

0 5 10 15 20 25 30 35 40

Time (hours)

N
o

. 
o

f 
B

a
c
te

ri
a

0

0.5

1

1.5
A

c
ti

v
e
 A

b
 C

o
n

c
. 

(  
g

/m
l)

Bac (HL = 2.8 h) Ab (HL = 2.8 h)

Figure 6.3: Effect of varying the half-life parameter for a penicillin-based pro-drug
on the inhibition ofβ-lactamase-producingS. aureusbacterial growth. The graphs
display the simulated log bacterial growth curve along withthe concentration of
activated drug molecules (µg/ml). 1.8µg/ml pro-drug added at time = 3.3 hours.A.
Half-life = 16min; B. Half-life = 1.4h; C. Half-life = 2.8h;
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Figure 6.4: Comparison of the local diffusion gradients of active antimicrobial
agents in the local environment ofβ-lactamase producingS. aureuscells for pro-
drug (A) and traditionalβ-lactam antibiotics (B). A. When administered in pro-
drug form the active antimicrobial agent concentration is highest in the vicinity of
the bacterial cells due toβ-lactamase-mediated activation.B. For traditionalβ-
lactam antibiotics the concentration of active agent is depleted in the vicinity of the
bacterial cells due to inactivation by theβ-lactamases.

cells as measured by the height of the peak in the concentration of activated anti-

microbial agent (Fig. 6.5).

With a lower diffusion rate, the concentration of activatedanti-microbial agents

in the local vicinity of the bacterial cells increased more rapidly. This may be

explained by the fact that with higher diffusion rates, the rate of clearance of the

activated drug molecules from the vicinity of the bacterialcells would be quicker

(Fig. 6.4A). This type of behaviour would also be expected tooccur in environments

where there is a high flow rate. The efficacy of the activated antimicrobial agents

depends on their ability to stay long enough in the vicinity of the bacterial cells to

bind to and inhibit growth.

The pro-drug delivery system results in higher concentrations of activated drug

molecules in the direct vicinity of the bacterial cells. Thesystem is therefore sen-

sitive to any forces, such as diffusion or flow forces, that may result in dispersal of
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the activated compounds. It is important, therefore, to take this into account when

designing pro-drugs and try to take measures to minimize this such as, for exam-

ple, designing molecules that have a greater binding affinity or are electrostatically

attracted to the bacterial cells.

This problem is not so evident with traditional antibiotic approaches because

they usually involve the administration of relatively highdoses of active anti-

microbial agent that are not specifically targeted to the local vicinity of the bacterial

cells. In fact for some types ofβ-lactam antibiotic, such as penicillin G, increas-

ing the diffusion rate results in increased antibiotic efficacy (Fig. 4.4). This could

be due to the fact that higher rates of diffusion results in dispersal ofβ-lactamase-

inactivated penicillin G in the vicinity of the bacterial cells and replacement by

active penicillin G from elsewhere in the environment - the reverse situation to the

pro-drug system (Fig. 6.4B).

6.2.4 β-lactamase Production Rate

It is clear that theβ-lactamase production rate of the bacterial cells is an important

parameter to be considered when investigating theβ-lactamase-dependent pro-drug

delivery system. The production rate can vary considerablybetween different bac-

terial strains, and this must be factored in when assessing the usefulness of this

drug delivery system. Figure 6.6 shows the growth dynamics of a bacterial popula-

tion when exposed to a penicillin-based pro-drug (1.8µg/ml), with theβ-lactamase

production rate varied between 10−7 - 10−5 µM s−1 agent−1. For reference, theβ-

lactamase production rate for naturally occurring Type A MRSA under these simu-

lation conditions was estimated to be 3.28 x 10−7 µM s−1 agent−1 (see chapter 3).

The results confirm the important role that theβ-lactamase production rate has
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Figure 6.5: Effect of varying the user-defined diffusion parameter (D) for Fick’s
First Law of diffusion on the inhibition ofβ-lactamase-producingS. aureusbacte-
rial growth by a penicillin-based pro-drug. The graphs display the simulated log
bacterial growth curve along with the concentration of activated drug molecules
(µg/ml). 1.8µg/ml of pro-drug added at time = 3.3 hours.A. D = 0.001;B. D = 0.01;
C. D = 0.1.
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Figure 6.6: Effect of varying theβ-lactamase production rate on the inhibition
of β-lactamase-producingS. aureusbacterial growth by a penicillin-based pro-
drug. The graphs display the simulated log bacterial growthcurve along with
the concentration of activated drug molecules (µg/ml). 1.8µg/ml of pro-drug
added at time = 3.3 hours.A. Production Rate = 10−7 µM s−1 agent−1; B. Produc-
tion Rate = 10−6 µM s−1 agent−1; C. Production Rate = 10−5 µM s−1 agent−1.
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on the efficacy of theβ-lactamase dependent pro-drug delivery system. For these

simulations, it is assumed that there is no contamination orspontaneous activation

of the active anti-microbial agent apart from activation byβ-lactamase. In real life,

there may be some contamination with active compound that would lead to posi-

tive results even when treatingβ-lactamase-negative strains of bacteria. However,

this ambiguity can lead to problems when assessing the true effectiveness of the

approach.

The active drug concentration threshold required for inhibition of growth is ap-

proximately 0.8µg/ml. This threshold is determined by the minimum inhibitory

concentration of the activated antimicrobial agent. It is noteworthy however, that

even at highβ-lactamase production rates (e.g. Fig. 6.6E) where the active drug

concentration remains above the threshold of inhibition for a longer period of time,

the length of time growth is inhibited is not significantly longer than at lower pro-

duction rates (Fig. 6.6C). The length of time growth is inhibited seems to be limited

by the half-life (2520 s) of the drug in this case (see Fig. 6.3).

6.3 Case Study: NB2001 & NB2030

In recent years, there has been increased interest in developing novel pro-drug

compounds for treating antibiotic resistant bacteria. Twocompounds, called

NB2001 and NB2030, were recently developed that exploit theβ-lactamase de-

pendent enzyme-catalysed therapeutic activation (ECTA) pro-drug strategy [8, 80].

The general structure of these compounds consists of a cephalosporin backbone

(cephalothin derivative for NB2001 and cefazolin derivative for NB2030) with an

antibacterial agent (triclosan) in pro-drug form at the 3’ position of the cephem nu-

cleus (Fig. 6.7) [8]. The antibacterial agent is released byβ-lactamase-mediated
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A.

B.

C.

Figure 6.7: Chemical structures of NB2001 (A), NB2030 (B) and triclosan (C).
They consist of a cephalosporin side chain (NB2001 = cephalothin, NB2030 = ce-
fazolin) at position C-7, along with the enoyl reductase inhibitor triclosan at the C-3
position of the cephem nucleus [80].

hydrolysis of theβ-lactam ring in the pro-drug structure.

The active antibacterial agent released from NB2001 and NB2030 is triclosan,

which possesses broad-spectrum antimicrobial activity against both gram-positive

and negative bacteria [93]. It is commonly used in health-care products such as

handwash, toothpaste and surgical scrubs [94]. Triclosan has been shown to have

potent activity againstS. aureusbacteria by binding to the enoyl-[acyl-carrier-

protein] reductase (FabI) enzyme involved in the bacterialfatty acid synthesis cycle

[81]. However, the complex interactions that triclosan haswith the bacterial cell

which lead to its lethality have still not been fully elucidated [93].

In order to explore Micro-Gen’s usefulness as a tool for investigating the ef-
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fectiveness of the pro-drug strategy, information from theexperimental studies of

NB2001 and NB2030 were used to develop a pro-drug model of their interactions

with S. aureusbacteria. The bacterial cellular parameters were maintained the same

as those used to represent Type Aβ-lactamase-producing MRSA in the previous

chapters, including theβ-lactamase-production rate which was estimated in chap-

ter 3. The kinetic parameters for the interaction between Type A β-lactamase and

the pro-drug compounds NB2001/NB2030 were derived from theexperimental lit-

erature (see Table 6.2) [80].

The mechanism of action of triclosan is less well understoodthan the traditional

β-lactam antibiotics. The main cellular target of triclosanis believed to be the

FabI enzyme of the fatty acid biosynthetic pathway (see above). Therefore, an

abstract representation of triclosan is incorporated in the model by using the pre-

steady state reaction kinetic parameters (k2/Kd) to describe the binding of triclosan

in the bacterial cell to FabI enzyme and concomitant inhibition of bacterial growth

(equation 3.1). This is a simplistic but reasonable representation of the mode of

action of triclosan for the objectives of this study aiming at evaluating the pro-drug

delivery system.

The kinetic parameter values (k2/Kd) that determined triclosan’s interaction with

the bacterial cell were estimated by fitting the values to theexperimental MIC esti-

mates determined from the literature [80]. These were maintained constant across

all the simulations carried out in order to assess the effects of changes to the pro-

drug delivery system.
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6.3.1 MIC Test Results

The in vitro activities of NB2001 and NB2030 (as well as the active antimicrobial

agent triclosan on its own and a cephalosporin antibiotic cephalothin) againstS. au-

reusbacteria from the experimental literature were compared with predicted values

from Micro-Gen (Table 6.1) [80]. Predicted values where a specified percentage of

contamination with free triclosan was assumed were also included. The percentage

of contamination was derived from the experimental resultsof high-pressure liquid

chromatography (HPLC) tests documented in the original experimental study [80].

Table 6.1: Comparison of predicted MICs (with and without contamination with
free triclosan) from Micro-Gen model and experimentally determined MICs for
the pro-drugs NB2001 and NB2030, as well as triclosan and cephalothin, versus
Type A β-lactamase-producing MRSA bacteria. Percentage contamination with
free triclosan: NB2001 = 4 %, NB2030 = 1 %.

Antimicrobial Pred MIC Pred (Contam) MIC Exp MIC

Drug (µg/ml) (µg/ml) (µg/ml)

NB2001 0.0014 0.001 0.0002 - 0.002

NB2030 0.0003 0.0003 0.0002 - 0.004

Triclosan 0.0001 NA ≤0.0002

Cephalothin 103.1 NA 64

The experimental estimates of the MICs for NB2001 and NB2030vary greatly

between different strains ofS. aureus, which makes it difficult to verify the exper-

imental predictions with a high degree of accuracy. In particular, theβ-lactamase

production rates for the strains used in the experimental analysis were only qualita-

tively estimated by a colourimetric test with nitrocefin [80]. However, given these

limitations, it is still encouraging that the predicted MICs for NB2001 and NB2030

were within the range of values recorded in the experimentalstudy.

The model also provided a means to assess the impact of potential contamina-
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Figure 6.8: Predicted effect of varying percentage contamination with free tri-
closan (0% = pure pro-drug, 100% = pure triclosan) on MinimumInhibitory Con-
centrations (MICs) of NB2001 and NB2030 versus Type Aβ-lactamase-producing
MRSA bacteria. Simulated drug compounds were added after 3.3 hours of incuba-
tion, during the exponential phase of bacterial growth.

tion with free triclosan on the MICs of the pro-drugs. For example, the level of

contamination in NB2001 was estimated experimentally to be4 %. The Micro-Gen

model predicts that this level of contamination would account for approximately a

30 % decrease in the MIC compared to pure NB2001 (0.0010 versus 0.0014µg/ml).

On the other hand, the 1 % contamination found in NB2030 was predicted to not

have a detectable effect on its MIC.

Due to the inherent problem of contamination in pro-drug preparations it is

useful to be able to quantify how this might distort MIC determinations. Theoret-

ical modelling of the drug compounds can provide a means to estimate this effect.

Figure 6.8 shows the effect of varying the percentage of freetriclosan contami-

nation between 1 - 100 %, where 100 % represents pure triclosan. Since triclosan

has very potent antibacterial activity (MIC≤0.0002µg/ml), the results of MIC de-
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terminations for the pro-drugs can be sensitive to contamination orβ-lactamase-

independent hydrolysis.

In the case of NB2001, there is a strong negative correlationbetween the MIC

and the proportion of contamination with free triclosan (r =−0.997, p< 0.01).

However, the MIC of NB2030 is less sensitive to distortion bythe presence of

free triclosan, although there is still a significant negative correlation (r =−0.868,

p = 0.011) This is because the catalytic efficiency (kcat/KM ) of theβ-lactamase en-

zyme versus NB2030 is ten-fold higher than NB2001, and therefore the availability

of activated triclosan is less of a limiting factor on the efficacy.

If there is a high amount of contamination, then this can leadto mislead-

ing results. For example, NB2001 and NB2030 were found to have lower ex-

perimental MICs (0.0002µg/ml) againstS. aureusstrain 29213 than strain PC1

(NB2001 = 0.002µg/ml; NB2001 = 0.004µg/ml) [80]. This was in spite of the fact

that strain PC1 had a higherβ-lactamase production rate, and therefore would be

expected to have a lower MIC. Differences in the level of contamination with free

triclosan (or non-β-lactamase-mediated activation) could not be ruled out as acause

for this behaviour, and it highlights the importance of contamination studies when

assessing the efficacy of a pro-drug treatment strategy.

6.3.2 Sensitivity Analyses

The β-lactamase enzyme catalysed therapeutic activation (ECTA) pro-drug strat-

egy employed by NB2001 and NB2030 means that their efficacy isstrongly depen-

dent on theβ-lactamase status of the bacterial cells being treated. This approach

is designed to be particularly effective againstβ-lactamase over-expressing cells.

This dependence on theβ-lactamase status of the cells is illustrated in Figure 6.9
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Figure 6.9: Predicted effect ofβ-lactamase production rate on minimum inhibitory
concentrations (MIC) of NB2001 and NB2030 versus simulatedβ-lactamase-
producingS. aureusbacteria. Free triclosan (which is unaffected byβ-lactamase)
is included as a control. Drug compounds were added after 3.3hours of incubation,
during the exponential phase of bacterial growth.

where the simulated log MIC of each pro-drug is graphed against a range of differ-

entβ-lactamase production rate values. There is a significant negative correlation

between theβ-lactamase production rate and the MICs in the results (NB2001:

r =−0.993, p = 0.007; NB2030: r =−0.959, p = 0.041). This is to be expected given

the mechanism of activation isβ-lactamase-dependent.

Variation between the graphs of NB2001 and NB2030 are due to differences

in the kinetic parameters of the enzymatic cleavage of theβ-lactam ring. The cat-

alytic efficiency (kcat/KM ) of Staphylococcal Type Aβ-lactamase with NB2030 is

approximately ten-fold higher than with NB2001. As a result, the MIC for NB2030

is lower than NB2001 at any givenβ-lactamase production rate. However, at very

high production rates (e.g.>10−5 µM s−1 agent−1) the MIC of NB2030 begins

to be limited by the efficacy of the activated triclosan, and the graphs of the two
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Figure 6.10: The user-defined diffusion coefficient for Fick’s first law of diffusion
was varied over the range 0.001 - 0.2 to assess the relative impact of diffusion rate on
the minimum inhibitory concentration (MICs) of NB2001, NB2030 and triclosan
againstβ-lactamase-producingS. aureusbacteria. Drug compounds added after 3.3
hours of incubation, during the exponential phase of bacterial growth.

pro-drugs start to converge.

Another important factor that can influence pro-drug activity is the diffusion rate

in the environment. As discussed above, for the hypothetical penicillin-based pro-

drug, this can have an important impact on pro-drug efficacy.Figure 6.10 shows the

results of investigations on the effect it has on the MICs of the pro-drugs NB2001

and NB2030. For free triclosan, there is a significant negative correlation between

the MIC and the diffusion coefficient of Fick’s first law of diffusion (r =−0.989,

p = 0.011). This is probably due to faster transport of antibiotic via diffusion pro-

cesses to the interior of the colony resulting in better drugefficacy, or lower MIC

(see Fig. 6.4B).

However, when triclosan is administered in pro-drug form (NB2001 and

NB2030), there is no longer a significant negative correlation between the diffu-
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Figure 6.11: Predicted effect of varying the half-life on the minimum inhibitory
concentrations (MICs) of NB2001 and NB2030, and triclosan against simulatedβ-
lactamase-producingS. aureusbacteria in culture. Drug compounds were added
after 3.3 hours of incubation, during the exponential phaseof bacterial growth.

sion coefficient and the MIC (NB2001: r = 0.829, p = 0.171; NB2030: r =−0.860,

p = 0.140). In fact, for NB2001 there is evidence of a positivecorrelation, although

it is not statistically significant. This may be because the increased diffusion rate

results in dispersal of the activated antimicrobial agent from the vicinity of the

bacterial cells (see Fig. 6.4A). The rate ofβ-lactamase-mediated activation of the

pro-drugs in the vicinity of the colony could also be a limiting factor in this case.

This is particularly evident with NB2001 because of the lower catalytic efficiency

(compared to NB2030) of theβ-lactamase enzyme at cleaving it.

Finally, the impact of the half-life on the efficacy of the pro-drugs was also

investigated. For free triclosan, there is a significant negative correlation between

the half-life and the MIC of the drug (r =−0.961, p = 0.039). There is also a negative

correlation between the half-lives of NB2001 and NB2030 andtheir MICs but it is

133



not statistically significant over the range of values tested (NB2001: r =−0.914,

p = 0.086; NB2030: r =−0.945, p = 0.055). When the half-life of the pro-drug is

below a certain threshold (in this case, approximately 1000s), the pro-drug degrades

before the concentration of activated antimicrobial agentcan reach the minimum

threshold for inhibition of growth (see Fig. 6.3). This threshold is influenced by the

time it takes for induction ofβ-lactamase expression in the bacterial cells to take

place.

6.4 Conclusions

The results presented here provide preliminary examinations of the pro-drug deliv-

ery system and how it influences the dynamics of bacterial growth and interactions

with drug molecules. These initial investigations show that the enzyme-catalysed

therapeutic activation (ECTA) pro-drug strategy represents a promising alternative

approach for treatingβ-lactamase expressing resistant pathogens. There are distinct

characteristics about the pro-drug system which distinguish it from the traditional

antibiotic approach, and it is worthwhile to explore these differences in order to

compare the strengths and weaknesses of each approach.

The dynamics of this system differ from the traditionalβ-lactam treatment strat-

egy and therefore could result in contrasting selective pressure on the bacteria (i.e.

selection againstβ-lactamase-producing strains of bacteria). However, a good the-

oretical understanding of the complex interactions involved must be developed in

order to prevent rapid development of resistance to these new types of drugs as has

occurred with many traditional antibiotics. This will require studies at various lev-

els, from high level population-based mathematical studies to low-level agent-based

models. However, as is the case for other antibiotics, thesemodels require detailed
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biological information about the cellular and molecular components of the system

in order to correctly address the questions of how to optimize for treatment success.
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Table 6.2: Inputted parameter values for simulations of pro-drug interactions with
β-lactamase-producingS. aureusbacteria in Micro-Gen model.b.u.= biomass
units; loop= program loop (∼2 s in real time)

Type of Entity Parameters (units) Input Value

Environment
Patch area (b.u.) 20000
Patch nutrient level (b.u.) 80000
Diffusion co-efficient 0.1

Bacterial Cell

Generation time (min) 29
Threshold for division (b.u.) 10000
Nutrient intake (b.u. loop−1) 10.0
Survival cost (b.u. loop−1) 0.2
Stationary phase relative metabolic rate 0.2
Lag phase length (min) 63
β-lactamase production rate (µM s−1):
Type A 3.28 x 10−7

Type C 1.62 x 10−7

β-lactamase production cost (b.u.) 0.1

β-lactamase

Molecular weight (Da) 30000
Half-life (s) 53640
kcat (s−1):
Penicillin-based pro-drug 171.0
NB2001 1.01
NB2030 30.8
KM (µM):
Penicillin G-based pro-drug 51.1
NB2001 6.3
NB2030 20.0

Activated Pro-Drugs

Half-life (s)
Hypothetical compound 2520
Triclosan-equivalent 3600
k2 (s−1):
Hypothetical compound 0.185
Triclosan-equivalent 10.0
Kd (µM):
Hypothetical compound 1540
Triclosan-equivalent 10.0
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CHAPTER 7

CONCLUSIONS ANDFUTURE WORK

7.1 Summary and Conclusions

An agent-based model of bacteria-antibiotic interactionshas been developed, which

incorporates the antibiotic resistance mechanisms of MRSAbacteria. The model,

called the Micro-Gen Bacterial Simulator, uses information about the cell biology

of bacteria to produce global information about populationgrowth in different envi-

ronmental conditions (Chap. 3). It facilitates a detailed systems-level investigation

of the dynamics involved in bacteria-antibiotic interactions and a means to relate

this information to traditional high-level properties such as the Minimum Inhibitory

Concentration (MIC) of an antibiotic (Chaps. 4 - 5).

The individual bacteria are represented by software agentsthat store physical

traits of the cells as well as behavioural rules associated with them. The culture en-

vironment is represented by a discrete, two-dimensional grid containing diffusible

elements such as nutrients, enzymes and antibiotics. Micro-Gen is also designed

to take advantage of high performance computing resources by including an im-

plementation of the Message Passing Interface (MPI) for running in parallel on

multiple computers.
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The model is highly adaptable and capable of being scaled up from lightweight

portable devices to high performance parallel computing machines. The user can

input parameters applicable to different species of bacteria by modifying low-level

cellular attributes such as size, growth rate, motility etc. However, as shown here,

it can also be adapted to incorporate detailed representations of specific antibiotic-

resistance strategies such as those employed by MRSA.

The two main resistance strategies againstβ-lactam antibiotics employed by

MRSA were incorporated into the model:β-lactamase enzymes which hydrolyt-

ically cleave antibiotic molecules, and penicillin-binding proteins (PBP2a) with

reduced binding affinities for antibiotics. In order to quantify the efficacy of the

antibiotics at inhibiting cell division, kinetic parameters describing the reactions

between antibiotics and PBP2a in the cell andβ-lactamase cleavage of antibiotics

were derived from biological literature.

Tests with commonβ-lactam antibiotics indicate that the model can be used to

generate quantitatively accurate predictions of dosage requirements for antibiotics

against different strains of MRSA from basic cellular and biochemical information.

Furthermore, by varying key parameters in the model the relative impact of differ-

ent kinetic parameters associated with the two resistance mechanisms toβ-lactam

antibiotics were investigated. The model has also been usedto investigate the sys-

tem dynamics taking place within a population of bacteria. By varying properties

such as the diffusion rate, population size,β-lactamase production rate or antibiotic

half-life, the effects of these parameters on treatment response could be examined.

Traditional methods of measuring antibiotic efficacy such as the Minimum In-

hibitory Concentration are insufficient for understandingthe complex dynamics that

lead to the rapid development and spread of antibiotic resistance within bacterial

populations. However, the ability to investigate the relationship between individ-
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ual molecular components of the system and the overall treatment outcome can

lead to a better understanding of how to optimize antibioticperformance and pre-

dict treatment outcome. The agent-based modelling approach represents another

computational tool set, in addition to existing pharmacokinetic-pharmacodynamic

mathematical models, for assessing the efficacy of novel drug compounds. Micro-

Gen can also be used to indicate evolutionary pathways or dead-ends that may exist

for bacteria in response to antibiotic exposure.

The model can also be extended to represent new classes of antimicrobial agents

and strategies for treating resistant bacteria. For example, the model has been used

to examine the system dynamics involved in the enzyme-catalysed therapeutic acti-

vation (ECTA) pro-drug strategy for treating antibiotic resistant bacteria (Chap. 6).

This involves the application of a substrate-like pro-drugmolecule containing the

β-lactam ring structure, which undergoes therapeutic activation catalysed byβ-

lactamase enzymes to achieve selective release of a cytotoxic antimicrobial agent.

The model was used to examine the dynamics of this system of activation and assess

its therapeutic potential from a theoretical standpoint.

7.2 Future Work

Micro-Gen can be used to test hypothetical scenarios by varying the parameters of

existing antibiotics to explore how potential novel compounds might act. It is a

useful tool for the rapid screening of drug compounds against a diverse range ofS.

aureusstrains in simulated culture conditions. Future work couldalso include using

the model to investigate the system dynamics of combinationtherapy with multiple

classes of antibiotic. The agent-based approach is also suitable for modelling the

evolution of antibiotic resistance over time by incorporating genetic components
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into the bacterial agents. This would allow both the temporal and spatial dynamics

of antibiotic resistance development to be examined.

Another important development of the model would be to expand the environ-

ment to represent three-dimensional space in order to modelmore complex spatially

structured microbial communities such as biofilms. Biofilmsare complex aggrega-

tions of microbial cells that are characterised by their genetic diversity, structural

heterogeneity and complex cellular interactions. In thesestructured communities,

there can be highly heterogeneous localised niches where the chemistry varies dra-

matically over small distances. The agent-based approach is a powerful tool for

modelling interactions within a heterogeneous environment since the parameters

for the simulation are defined at the individual level.

Bacteria communicate with one another within biofilms in a process known as

quorum sensing, using chemical signalling molecules called auto-inducers. This

cell-to-cell communication allows a population of bacteria to coordinate the gene

expression, and therefore the behaviour, of the group. Whenbacteria exist in spa-

tially structured communities, the cell numbers can reach sufficiently high numbers

to induce a quorum sensing response. In the case ofS. aureusbacteria, the change

from a commensal, non-invasive state to a pathogenic state is mediated by signalling

peptides that are part of the quorum sensing response.

The concentration of signals in a community is influenced by the production

rate and half-life of the signal molecule, the diffusion properties of the signal and

external hydrodynamic conditions. Micro-Gen already has systems to model these

properties with respect to free molecules (e.g. nutrients,enzymes, antibiotics) in

the environment. A diffusion algorithm implementing Fick’s First Law of diffusion

dictates the movement of molecules in the simulated environment. This will need to

be adapted and expanded to represent the more complex dynamics within the highly
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structured organisation of a biofilm community. This could be achieved by incorpo-

rating a more complex hydrodynamics algorithm to representthe flow of nutrients

and other molecules within the colony. The model representsa robust foundation

on which to build more complex models of real-world microbial communities such

as these.
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