

A Remote Access CT

Colonography Training
System

Vincent Luauté

A thesis submitted as a requirement for the degree
of Master of Engineering in Electronic Engineering

Supervised by Dr Robert Sadleir

School of Electronic Engineering
Dublin City University

August 2007

ii

Declaration

I hereby certify that this material, which I now submit for assessment on the

programme of study leading to the award of Master of Engineering is entirely my own

work and has not been taken from the work of others save and to the extent that such

work has been cited and acknowledged within the text of my work.

Signed:

ID No:

Date:

iii

Acknowledgements

I wish to express my sincere gratitude to my supervisor, Dr. Robert Sadleir for his

guidance and support throughout my research. I wish to thank John O’Halloran and Ji

Zhanlin for their contribution to this project. I also thank my colleagues of the Vision

Systems Group, particularly Dr. Tarik Chowdhury and Patrica Moore for their

assistance. I also wish to acknowledge contributions from our medical colleagues

from the Gastrointestinal Unit and Department of Radiology at the Mater

Misericordiae Hospital in Dublin, particularly Dr. Helen Fenlon and Dr. Paraic

MacMathuna.

iv

Abstract

Remote Access CT Colonography Training System

Vincent Luauté

Under the supervision of Dr. Robert Sadleir at Dublin City University

A thesis submitted as a requirement for the degree of Master of Engineering in

Electronic Engineering., 2006

Computed tomography colonography (CTC) is emerging as an alternative to
conventional colonoscopy (CC). However CTC is not yet in widespread use due in
part to the lack of suitably trained radiologists. We have developed a novel remote
access system to train radiologists for colorectal cancer screening using CTC. To
ensure that radiologists can gain the relevant experience without the need for any
specialist equipment or software, we opted for designing a system that is accessible
via the Internet using a standard browser. The interface lets the user locate and
characterise polyps with the help of appropriate tools such as windowing, polyp
measurement, zooming and a 3-D view. Each user has an account in order to allow
monitoring of their training. They can also run an automatic evaluation of their work
based on gold standard information previously gathered from specialists. This thesis
also describes an initial implementation exclusively made up of Java Servlets. The
evaluation of this system has been discussed in order to determine a better approach.
The final system has been developed using a combination of Java Servlets and
Applets. This approach offers fast response time to the user-interface. An iteration of
lumen tracking using the system takes approximately 45 seconds. This research has
yielded an operational system that meets the needs of remote access users.

v

Table of Contents

Chapter 1. Introduction ..1

1.1 The need for CTC training...1

1.2 A remote access training solution ..2

Chapter 2. Background ..4

2.1 Colorectal cancer ...4

2.2 Computed tomographic colonography...4

2.3 Appropriate CTC training ..6

2.4 Previous work ..7

2.5 Java technologies ...9

Chapter 3. Approach ..10

3.1 CT dataset constitution ..10

3.1.1. Dataset header ..10

3.1.2. Dataset body...11

3.2 System requirements..14

3.3 Summary ..15

Chapter 4. Implementation...17

4.1 Training system made up of server side programs ..17

4.1.1. Introduction..17

4.1.2. Design of the system with server side programs ...18

4.1.2.1. Operation of the system ..18

4.1.3. Implementation of the system with server side programs19

4.1.3.1. Data exchange between server and client ...19

4.1.3.2. Layout using CSS ...21

4.1.3.3. Home page ..22

4.1.3.4. Extract and display axial images...23

4.1.3.5. Navigation...25

4.1.3.6. Flagging potential polyps..27

4.1.3.7. Polyp’s marks..28

4.1.3.8. Density setting ..28

4.1.3.9. Zoom setting ...30

4.1.3.10. Result panel...31

vi

4.1.4. Conclusion on the implementation using Java Servlets.....................................32

4.2 Training system made up of Servlets and Applets...33

4.2.1. Introduction..33

4.2.2. Design of the system with Applets and server side programs33

4.2.3. Implementation using Applets and server side programs35

4.2.3.1. Dataset compression ...35

4.2.3.2. Creation of a simulated scout x-ray ..41

4.2.3.3. Digitally signing a Java Applet...45

4.2.3.3.1. To generate a Jar archive ...45

4.2.3.3.2. The hash algorithm (Secure Hash Algorithm) SHA-1.................................46

4.2.3.3.3. To generate a RSA key pair ...46

4.2.3.3.4. Digitally signing the Jar archive ..47

4.2.3.3.5. Receive and verify a digitally signed Jar archive ..48

4.2.3.4. Dataset selection ...50

4.2.3.5. Multi-user server ...51

4.2.3.5.1. Encapsulate a dataset into a Jar file ...52

4.2.3.5.2. Server using sockets...52

4.2.3.5.3. Server using a Servlet ..54

4.2.3.6. A separate thread to display the downloading progress..................................56

4.2.3.7. Retrieve 2-D slices on the client’s side...58

4.2.3.8. Generate an axial image..60

4.2.3.9. Reformatted images ..61

4.2.3.9.1. Generate a coronal image...61

4.2.3.9.2. Generate a sagittal image ...62

4.2.3.9.3. Realistic reformatted image ...64

4.2.3.9.4. Region of interest for reformatted images ...65

4.2.3.10. Dataset navigation...67

4.2.3.11. View tabs and synchronisation ...69

4.2.3.12. Measurement...70

4.2.3.13. Zoom Window ..71

4.2.3.14. 3-D Visualisation ..72

4.2.3.15. Gold standard Evaluation..76

4.2.3.16. Display all pictures of a specific polyp category ..79

4.3 Multi-user architecture...82

vii

4.3.1. Introduction..82

4.3.2. Login panel ..82

4.3.3. User registration...83

4.3.4. User possibilities..84

4.3.5. Result page...86

4.3.6. Administration panel..87

4.3.7. Conclusion for the implementation using Servlets and Applets........................89

Chapter 5. Testing & Results ...90

5.1 Testing..90

5.1.1. Introduction..90

5.1.2. Test of the automatic evaluation ..90

5.1.3. Response time of the interface...92

5.1.3.1. Response time of axial images..92

5.1.3.2. Response time of reformatted images...93

5.1.4. Transfer time of CT datasets between server and client93

5.2 Discussion ..94

Chapter 6. Conclusion..96

6.1 Initial implementation..96

6.1.1. Speed problem ...96

6.1.2. Usability problem...96

6.2 Revised implementation...97

6.2.1. Better response time...97

6.2.2. Advanced features..97

6.2.3. Evaluation strategy...98

6.3 Future work..99

References 101

Conferences and Publications 107

viii

List of figures

Figure 1-1. CT scanner in the Mater hospital (Dublin) ..2

Figure 1-2. Client-Server architecture. The system can be accessed from every

computers connected to the server. ..3

Figure 2-1. Modern analysis tools usually provide different type of 2-D image

visualisation. These types include reformatted image (coronal and sagittal) in addition

to axial images. ..5

Figure 3-1. Overview of the CT Dataset used on this system. The first 24 Bytes of

a dataset constitute the header and contains information about the format. The rest of

the dataset constitute the body and contains the CT axial slices.10

Figure 3-2. A 2-D axial image extracted from a CT dataset. A CT dataset can be

represented as a stack of 2-D axial images. ...12

Figure 3-3. Overview of the density range of a CT Dataset. Voxels in a dataset

have a value in the range of -1024 to 2400. -1024 corresponds to the lowest density

e.g. air and 2400 corresponds to the highest density e.g. metal implant.12

Figure 3-4. Number of voxels per density value. This graphic illustrates the most

recurrent density values in CT datasets. ..13

Figure 3-5. 2-D axial images with different density settings..................................14

Figure 4-1. Block diagram of the architecture of the system17

Figure 4-2. Operation of the system. ..19

Figure 4-3. Overview of data exchange between server and client. The server sends

HTML pages to the client. The client sends “post data” information to the server via

HTML forms. ..20

Figure 4-4. The home page of the system. On this HTML page, the user can select

a dataset and a profile before starting the system. ...22

Figure 4-5. 2-D axial images in a CT dataset. A dataset can be represented as a

cube made up of a stack of axial images..23

Figure 4-6. The trainee’s interface with a potential polyp (circle). On this interface,

the user can navigate through the axial images using the horizontal bar, the user can

also use the vertical bar on the left to select a specific density range and use the

different options on the right of the interface to zoom in or zoom out.25

Figure 4-7. Select and display an axial image. This flowchart describes the

operation of the different image navigation features. ..26

ix

Figure 4-8. Flagging a potential polyp. If the user clicks on the axial image, a

circle is drawn around the coordinates of the mouse click and a horizontal toolbar

appears at the bottom of the interface. On this tool bar, the user can select the type and

the size of the new polyp. ..28

Figure 4-9. Axial image with different density settings. The user can select an

appropriate density range using the vertical tool bar at the left of the interface..........29

Figure 4-10. Zoom on a potential polyp. On the right of the interface, the user can

select an appropriate zoom area and zoom factor. ...30

Figure 4-11. The result panel displaying a true-positive polyp. In this example, a

polyp flagged by the trainee and the corresponding polyp from the gold standard.

When the trainee runs the automatic evaluation, a colour code is used on the

navigation bar at the top of the interface to indicate the true-positive (white), false-

positive (yellow) and the false-negative (red) polyps. Also on this page, the user can

use drop down menus to display the false-positive and false-negative polyps............31

Figure 4-12. Overview of data exchange. The server sends HTML pages to the

client and the client returns post data information. When the Applet is started, the

Applet communicates with the server using data streaming..34

Figure 4-13. Operation of the system. This flowchart highlights the operation

difference between a trainee and a specialist using the system.35

Figure 4-14. Difference between two consecutive axial images. This image

highlights the fact that sending a difference image represents less data transfer than

sending an entire axial image...36

Figure 4-15. Generate a simulated scout x-ray. The resulting image is obtained by

calculating the average density on Y. ..41

Figure 4-16. Administration tool to generate a simulated scout x-ray. The

administrator can use 4 sliders in order to highlight the colon on the scout x-ray.42

Figure 4-17. Focusing on the appropriate region on Y. It is possible to focus on the

relevant region around the colon and prevent the remaining information to overload

the scout x-ray..43

Figure 4-18. Generate a simulated scout x-ray. This flowchart illustrates the process

used to calculate the average density of a chosen region of the CT dataset and store

the result on a JPEG image. ...44

Figure 4-19. Pack the Applet files into a Jar archive..46

Figure 4-20. Digitally signing the Jar archive. A SHA-1 algorithm hashes each file

x

of the Jar and the remaining digests are stored inside the file VSG.SF after being

signed using the RSA private key..47

Figure 4-21. Verifying a Jar archive. When the Jar is received on the client side,

digests stored in the file VSG.SF after decrypted using the RSA public key. These

decrypted digests are then compared one by one with the digests calculated on each

file of the Jar. If each digest is identical, it means that the Jar hasn’t been altered

during its transfer. ..49

Figure 4-22. Security warning before starting the Applet. The user is informed that

the Applet hasn’t been digitally signed by a CA and asks the user if he/she wants to

trust the named publisher. ..49

Figure 4-23. Dataset selection. On this page, the user can select the dataset he/she

wants to train on...50

Figure 4-24. Dataset selection. This flowchart illustrates the process used to display

the relevant scout x-ray. ...51

Figure 4-25. Sending a selected dataset from the server to the client.53

Figure 4-26. Handle connection of several clients. The server classes welcomes a

new user and passes the corresponding. ..53

Figure 4-27. Interface of the server. ...54

Figure 4-28. Sending a selected dataset from the server to the client.55

Figure 4-29. Downloading progress for a specialist. ..56

Figure 4-30. Downloading progress for a trainee. ..57

Figure 4-31. Decoding process. This flowchart illustrates how each axial image is

decoded bit by bit when it is received on the client side. ..59

Figure 4-32. Flagging a potential colorectal cancer polyp. When the user clicks on a

2-D slice, a dedicated tool bar appears at the bottom of the interface and the user can

select his/her level of confidence, the type and the size of the new polyp.60

Figure 4-33. A 2-D coronal image in a CT dataset. There are as many coronal

images as there are pixels along the Y axis. ..61

Figure 4-34. Coronal image. ...62

Figure 4-35. A 2-D sagittal image in a CT dataset. There are as many sagittal

images as there are pixels along the X axis of an axial image.....................................63

Figure 4-36. Sagittal image...63

Figure 4-37. Stretching a coronal image to realistic proportions.64

Figure 4-38. Stretching a sagittal image to realistic proportions..............................65

xi

Figure 4-39. Axial image and region of interest of a coronal image.66

Figure 4-40. Simulated scout x-ray illustrating the position of one of the first,

middle and last axial image in the dataset ...68

Figure 4-41. Simulated scout x-ray illustrating the position of one of the first,

middle and last coronal images of the dataset. ..68

Figure 4-42. Simulated scout x-ray illustrating the position of one of the first,

middle and last sagittal image of the dataset. ..69

Figure 4-43. Image synchronisation. A polyp flagged on a supine-axial image is

automatically reported on a supine-sagittal image and the system focuses on the

relevant region of interest ..70

Figure 4-44. Zoom window and measurement tool. The length between two mouse

clicks is indicated at the bottom of the interface..71

Figure 4-45. Observer watching the projection of a volume on a projection plane. 72

Figure 4-46. Projection of a cube on a projection plane (viewed from above). Ray-

casting is used to represent a volume on a 2-D image using distances between the

observer and the volume’s voxels..73

Figure 4-47. A 3-D rendering of the inner surface of the colon. This image has been

generated with a threshold equal to -200 HU. A polyp is visible in the middle of this

image. ..74

Figure 4-48. 3-D rendering of a dataset subsection with a threshold superior to 350

HU. With this threshold value, the 3-D algorithm offers a view of the skeleton e.g. a

section of the spine...75

Figure 4-49. The 3-D interface. After the user has specified a region of interest, a

volume is displayed in a floating window. ..75

Figure 4-50. Generate a 3-D view from a zoomed area. ..76

Figure 4-51. The evaluation panel. On this panel, a colour code is used on the

navigation bar, on the 2-D images and on the scout x-ray to indicate the true-positive

(green), false-negative (blue) and false-positive (red) polyps.77

Figure 4-52. Polyp Category Object ...78

Figure 4-53. Floating window displaying polyp thumbnails of a specific category.

After the running the automatic evaluation, the user can click on a tab at the top of the

scout x-ray window to display thumbnails of a specific category.79

Figure 4-54. Calculating the number of rows and columns in the scout x-ray

window. ..80

xii

Figure 4-55. Find the selected thumbnail from the coordinates of the mouse click.81

Figure 4-56. Home page of the system...83

Figure 4-57. The registration panel. A new user can register and enter the relevant

information on this page. ...83

Figure 4-58. Multi-user system. This flowchart gives an overview of the operation

of the system that surrounds the applet..85

Figure 4-59. Option page..86

Figure 4-60. Result page. This page shows the number of true-positive, false-

negative, false-positive and the reading time for each dataset previously studied.87

Figure 4-61. The administration panel. After a new user register on the system, an

email is sent to the administrator. The administrator can then use this page to create

the new account, delete an existing account or display the results of a trainee.88

xiii

List of tables

Table 4-1. Overview of the time required for the different tasks..........................32

Table 4-2. Symbols encoded using Huffman codes. ...39

Table 4-3. Huffman codes array..40

Table 4-4. Average time (in second) to generate reformatted images with “skip

Bytes” and “readFully” methods. ..65

Table 4-5. Average time (in second) to generate different region of interests......67

Table 5-1. Result displayed on the evaluation panel after comparing coordinates

of polyps found by a trainee to the gold standard. ...91

Table 5-2. Response time (in seconds) for the different image.............................92

Table 5-3. Transfer time of CT datasets..93

Table 5-4. Transfer time of CT datasets using the a standard HTML port.94

 1

Chapter 1. Introduction

1.1 The need for CTC training

At present the most sensitive colorectal cancer screening technique is conventional

colonoscopy (CC). This involves an endoscopic examination of the colonic mucosa

using an instrument known as a colonoscope. The examination itself is extremely

invasive and can lead to complications. The CC examination is embarrassing and

uncomfortable for the patient and has achieved limited acceptance among those at risk

of developing colorectal cancer.

Computed tomographic colonography (CTC) is an emerging technique for colorectal

cancer screening. A CTC examination consists in doing an abdominal computed

tomography (CT) study using a CT scanner (figure 1-1). One of the main benefits

associated with CTC is that it is potentially more patient friendly than CC due to the

fact that it is minimally invasive. Although CTC has been demonstrated to have

similar sensitivity to CC for the detection of significant polyps1 (Fenlon et al. 1999,

Pickhardt et al. 2003) it is not yet in widespread clinical use.

This is partly due to the fact that only a limited number of radiologists have the skills

required to perform a CTC examination. The need for CTC training has been

highlighted in the literature (Cotton et al. 2004) particularly for problem cases e.g. flat

polyps (Fidler et al. 2004). Also, a recent study conducted by Fisichella et al. (2006),

shows that the lack of CTC training is the main reason why some Swedish

departments of radiology don’t use CTC yet.

1) A polyp is a flat or grape-like growth tissue into organ such as the colon.

2

Figure 1-1. CT scanner in the Mater hospital (Dublin)

Similarly in a paper related to the evolution of CTC, Dachman et al. (2003) explains

that the “steep learning curve has led researchers to advise against widespread

colorectal cancer screening with virtual colonoscopy outside of academic centers with

experienced readers”. This highlights the fact that accessibility to suitable training

resources is an issue that needs to be addressed.

1.2 A remote access training solution

The system described in this thesis has been developed specifically to deal with the

problem of accessibility to CTC training. This system allows the trainee to evaluate a

CTC dataset1 by flagging locations that they suspect to be potential polyps.

1) A CT Dataset contains computerized tomographic image data generated by a CT scanner using x-

rays.

3

Once the trainee has completed their evaluation the results are compared against the

gold standard1. To ensure radiologists gain the relevant experience without any

computer-related issues, the system should operate without the need for specific

software packages. This can be achieved by using a client-server architecture over a

network as illustrated in figure 1-2.

Figure 1-2. Client-Server architecture. The system can be accessed from every computers

connected to the server.

This approach allows the trainee to access the system remotely from a standard web

browser e.g. Mozilla Firefox or Microsoft Internet Explorer and provides the highest

level of compatibility as it can be used on every operating system. In addition patient

confidentiality is maintained as no direct access is provided to patient data. Instead

this data is accessed via a server which strips all the sensitive patient information

leaving only the image data.

1) In this case, the gold standard designates either conventional colonoscopies or CT colonoscopies

that have been conducted by specialists and against which trainee’s studies are compared.

Network

User data

CT datasets

Client 1

Browser

Client 2

Client 3

Server Side Client Side

Gold

standard

Browser

Browser

4

Chapter 2. Background

2.1 Colorectal cancer

Colorectal cancer is a major cause of cancer related death in developed countries.

Statistics published by Campo et al. (2004) indicate that colorectal cancer is the

leading type of cancer in Ireland.

Colorectal cancer usually begins as adenomas1 of the colonic mucosa (Konishi et al.

1982). Adenomas are usually classified according to their appearance as either sessile

(flat) or pedunculated (having a stalk). According to a study by Villavicencio et al.

(2000) men have a 1.5 relative risk of adenomas compared with women. Age, male

gender, and first-degree family history of colorectal cancer are risk factors for

adenomas. Polyps such as adenomas less than or equal to 5mm grow very slowly and

are unlikely to be malignant at this stage. However, the probability of cancer increases

with the size of the polyp and within four to eight years, colorectal cancers may arise

through a multi-stage process called the adenoma-carcinoma sequence (Hill et al.

1978, Morson et al. 1983). Colorectal cancer can be prevented if precursor polyps are

detected early in their course and successfully resected. This highlights the fact that

regular screening is required for high risk populations in order to reduce the mortality

from this disease.

2.2 Computed tomographic colonography

CTC is a relatively new technique for colorectal cancer screening that was introduced

by Vining et al. (1994). Before performing a CT scan, the patient’s bowels must be

distended. This is achieved by insufflating room air or CO2 via the rectum (Klein

2003). The resulting CT dataset can then be examined, either as a sequence of 2D

slices or as a reconstructed 3D model of the colon, for the presence of colorectal

polyps.

1) Adenoma is a benign tumour made up of glandular tissue such as colon.

5

Three types of 2-D slice can be generated from a CT datasets.

• Axial image is the most widespread type of 2-D image. This is explained by the

fact that CT scans are usually performed in the axial plane along the spine.

Therefore, the extraction of an axial image from an axial CT scan is a straight

forward operation (see figure 2-1.a).

• Coronal images can be rendered by computer reconstruction. This type of image

represents slices of the human body from the front to the back as illustrated in

figure 2-1.b.

• Sagittal images can also be rendered by computer reconstruction and can be

described as images obtained by slicing the human body from side to side as

illustrated in figure 2-1.c.

a) Axial image b) Coronal image c) Sagittal image

Figure 2-1. Modern analysis tools usually provide different type of 2-D image

visualisation. These types include reformatted image (coronal and sagittal) in addition to

axial images.

Even if conventional colonoscopy is known as the most sensitive colorectal cancer

screening technique, CC is not perfect and a study observed that the overall miss rate

for adenomas is 24% (Rex et al. 1997). Also, results obtained by CTC are likely to

improve with the natural progression of technology.

Moreover, researches are made to find out how to optimize CTC studies. For

example, polyp detection using CTC can be significantly improved by using two

datasets, one in supine and one in prone position (Fletcher et al. 2000).

6

One of the main benefits associated with CTC is that it is potentially more patient

friendly than CC due to the fact that it is minimally invasive. Furthermore, there is no

need for sedation and the patient can go back to work on the same day as the

examination, unlike CC where the patient is required to take a full day off work.

Besides, a study by Macari et al. (1999) demonstrated that CTC is particularly useful

for patients who fail to undergo conventional colonoscopy. This study estimates that

the percentage of incomplete conventional colonoscopies is 10%.

2.3 Appropriate CTC training

The learning curve associated with CTC has been highlighted in different studies

(Gluecker et al. 2002, Soto et al. 2005). For example, Gluecker has observed that “the

quality of data interpretation is directly related to the experience of the physician”.

Gluecker also found that the study of 50 patients contributes to “significant

improvement in specificity, an important decrease of false-positive findings and of the

time for data interpretation” but “are not sufficient to achieve sensitivity in the range

of 80%”. In the same way, Taylor et al. (2004) state that in order to gain proficiency

in CTC it is necessary for a radiologist to be trained using a large number of datasets

(50-100). These datasets should contain a mix of polyps, cancers, normal features and

pseudo polyps e.g. a protruding ileocecal valve1.

In a study intended to establish the general consensus regarding CTC training

guidelines Soto et al. (2004) sent out a questionnaire to 20 international experts in the

field. The outcome of their survey suggested that the most appropriate method for

reader training would consist of lectures and supervised hands-on workstation training

with 40 to 50 cases (20% of which should be normal). Also, Soto et al. (2005) believe

that the required training should be integrated into the relevant radiology residency

and fellowship programmes. However until that happens a radiologist interested in

acquiring competency in CTC must undertake a specific training course or participate

in dedicated fellowships.

1) An ileocecal valve prevents contents from flowing back from the colon to the small intestine.

7

2.4 Previous work

This research project continues on from previous work by the Vision Systems Group

in the area of CTC e.g. colon centreline calculation at CTC (Sadleir et al. 2004 a) and

computer aided detection (CAD) at CTC (Sadleir et al. 2002) and also work in the

area of medical image interpretation (Sadleir et al. 2004 b). This previous research

provides a solid background which has been used to develop this remote access

system for CTC training.

Some systems already provide remote access to medical images e.g. the system

described by Young et al. (2004). A system described by Bohne-Lang et al. (2005) is

designed to generate and display 3-D molecule structures. This system consists of

generating 3-D images on the server side and sending the result in Joint Photographic

Experts Group (JPEG) format (Pennebaker et al. 1993). The 3-D rendering algorithm

is only implemented on the server. The main advantage of this approach is to avoid

the need for any software installation on the client side. However, each time the user

interacts with the interface, a new image is generated on the server and transmitted to

the client. This type of system with image “on demand” has the advantage of being

easily developed and deployed. Therefore it can be a good starting point for the

present work.

Masseroli et al. (2004) described a system that is able to access images in a web

browser environment. This system is based on client-server architecture and is

implemented using Java. On the client side, a Java applet runs in the web browser. An

applet has the advantage of providing more advanced capabilities to create a user-

friendly interface. For instance, the system developed by Masseroli et al. gives the end

user the possibility to browse and visualize different patient and medical data. When

the end-user displays an image or a patient personal data via the applet interface, a

query is sent to the server side. The server is responsible for handling all queries and

accessing remote databases and file systems containing the requested data. The server

transfers the medical data to the client through secure connections. For the project

described in this thesis, a Java-based approach seems appropriate as large amounts of

data need to be exchanged between the server and the client side. This data includes

medical images and polyp coordinates. In addition, a Java applet would be useful for

implementing appropriate features required to facilitate the identification of potential

8

cancer polyps. These features include windowing, polyp measurement and zooming.

Slomka et al. (2000) also propose a Java-based remote viewing station for reading and

examining nuclear medicine images using a standard Internet browser. The interface

of the system is a Java applet,that provides image processing tools, such as bilinear

interpolation, cine display and filtering. The author of the system explains that the

performance of these tools is similar to a standard imaging workstation. Moreover,

this Java-based approach doesn’t require any software to reside on the client

computer. The support and deployment of such a system is therefore simplified. With

regard to the work described in this thesis, such an approach seems very interesting as

the CTC tutor is likely to be often modified and updated. This is due to the changing

needs of our medical collaborators and the constant evolution of the CTC technique.

The Java platform-independence also enables the utilization of the system from all

sites where an intranet or internet connection is available. The same features are

accessible regardless of the kinds of platforms.

In his article, Paulson (2005) describes a new web-technology call Ajax

(Asynchronous JavaScript and XML). The main advantage of this technology is the

possibility to request a URL without refreshing the current page of the web browser.

Therefore, a web-application using Ajax can be more interactive than a traditional

web-page. The term asynchronous, means that the user doesn't have to wait for the

response of an HTTP request. The requested data is instead transferred to the web-

application in the background while the end-user can continue using the interface of

the system. Ajax applications run on the client side. A server-side program must be

developed in order to send data requested by the client.

This emerging technology seems interesting as it offers more flexibility to the

interface. The interface of the system described in this thesis could be developed

using Ajax. However, Ajax relies on JavaScript which is often implemented

differently by the browsers and their different versions. Because of this, sites that use

JavaScript may need to be tested in multiple browsers to check for compatibility

issues. Also, because Ajax is an emerging technology, it might be useful to first

develop a full application without Ajax for Non-Ajax users.

9

2.5 Java technologies

The system described in this thesis has been developed using Java 2 Standard Edition

(J2SE) from Sun Microsystems. J2SE is a collection of application programming

interfaces (API) largely used by programmers to develop web-based applications.

According to Young (2004), “recent advances in Java applet, servlet and Java Server

Page (JSP) technologies now allow very sophisticated, interactive image manipulation

to be done over the web.”

Java programs are executed on a computer via a Java Virtual Machine (JVM). Sun

Microsystems have developed JVMs for the different operating systems (OS) which

makes Java, a platform independent programming language. There are different types

of Java program. We can differentiate server side and client side programs.

• Java Servlet and Java server page (JSP) are server side programs. A server side

program is an extension to a server that enhances the server's functionality. In

practical terms, Servlets and JSPs are commonly used to process forms and

create dynamic content.

o A Java Servlet is written in Java but can also contain hyper text mark-up

language (HTML) code in order to display some information via the user’s

browser.

o A JSP is usually used with an associated Java Bean. JSPs hold the code

related to the interface of the system and contains HTML and Java code. The

Java code of a JSP is limited to basic operations and is mainly used to

exchange data with the associated Java Bean. This Java Bean is exclusively

written in Java and is able to perform advanced operations like reading and

writing files on the server.

• A Java Applet is a client side program that can be run in a standard web browser

e.g. Firefox or Microsoft Internet Explorer. Applets provide advanced user

interfaces and are able to exchange data with server side Java programs.

This system has been developed using the NetBeans integrated development

environment (IDE) with the built-in versions of Apache Tomcat.

10

Chapter 3. Approach

3.1 CT dataset constitution

The CT datasets used on this system are generated from the DICOM images (NEMA

2003, summarised by Mildenberger et al. 2002) obtained from the original CT scan.

This is achieved using the NeatMed API (Sadleir et al. 2004 b). The resulting datasets

contain a header and a body as illustrated in figure 3-1.

Figure 3-1. Overview of the CT Dataset used on this system. The first 24 Bytes of a

dataset constitute the header and contains information about the format. The rest of the

dataset constitute the body and contains the CT axial slices.

3.1.1. Dataset header

The header holds some information related to the format of the dataset and the 2-D

axial images it contains. The header is made of 9 values. 6 are integers and 3 are float.

Each integer is written in the header using 2 Bytes and each float is written using 4

Bytes. When reading these data with a Java program, the 2 Bytes integers are stored

in “short” variables and the 4 Bytes float are stored in “float” variables.

CT DATASET

001101000111010101010100101011011

001010101000101011101001011010001

101110100110010101110101001010010

100101011101001011101011011011011

010101010011011011011010101011010

001101000101011101001011101011011

011011010101010100110101110100110

101011101010010100101110100101011

101001011101011011011011010101010

011011011011010101011010011010001

010111010010111010110110110110101

010110100101010010111101101101011

01001011101011011011011010101010

011011011011010101011010011010001

001110101101011010101001011011010

Dataset Body

 Dataset Header

11

Here is a list of Java variable containing header’s data and their respective type:

• formatID: Identification number of the dataset format (short)

• widthInVoxels: Width of dataset’s slices (in voxel) (short)

• heightInVoxels: Height of dataset’s slices (in voxel) (short)

• depthInVoxels: Number of slices in the dataset (short)

• minDensityValue: Minimum density value (short)

• maxDensityValue: Maximum density value (short)

• voxelWidth: Voxel width (mm per voxel on x) (float)

• voxelHeight: Voxel height (mm per voxel on y) (float)

• voxelDepth: Voxel depth (mm per voxel on z) (float)

Dataset’s header data are used in many ways on the system. For instance, the variable

“depthInVoxels” gives the number of axial images in the dataset. The variables

“minDensityValue” and “maxDensityValue” are used to find out the voxel1 density

range of a dataset (see equation 3.1.1).

ueDensityValyValue-min maxDensitgedensityRan = (3.1.1)

“VoxelWidth” and “voxelHeight” can be used to convert the Euclidean distance

measured on a 2-D slice into a length in millimetres.

3.1.2. Dataset body

The dataset’s body contains the voxel values. Each voxel is written using 2 Bytes (one

short). Therefore, an axial image is made of xelsheightInVoelswidthInVox 2 ××

Bytes. The CT dataset’s body can be described as a stack of 2-D axial images as

illustrated in figure 3-2.

1) Voxel is an abbreviation for "volume element" or "volume cell." It is the 3D conceptual counterpart

of the 2D pixel.

12

Figure 3-2. A 2-D axial image extracted from a CT dataset. A CT dataset can be

represented as a stack of 2-D axial images.

Each voxel has a density value in Hounsfield units. CT images of our CT datasets

have a density range of about -1024 to 2400 HU meaning that each picture can have

approximately 3500 greyscales. The standard Java grey levels system divides the

greyscale into 256 sections with black at 0 and white at 255. Therefore, each voxel

value of a 2-D slice must be converted into a 256 greyscale value (0 to 255) in order

to be displayed with Java. The equation 3.1.2 illustrates this simple conversion.

ValueminDensityValuemaxDensity
ValueminDensity

-
255)-(voxelvoxel ×

= (3.1.2)

It is also possible to shrink the original voxel greyscale (setting a window width) and

focus on a specific density value (window centre) to highlight information associated

with the bones or lungs (see figure 3-3).

Figure 3-3. Overview of the density range of a CT Dataset. Voxels in a dataset have a

value in the range of -1024 to 2400. -1024 corresponds to the lowest density e.g. air and

2400 corresponds to the highest density e.g. metal implant.

Bone

Lung

-1024

2400

X

Z

Width

Height

Y

Z

X

Y

Axial image extracted from a dataset CT Dataset

2-D Axial slice

13

1

10

100

1000

10000

100000

1000000

10000000

100000000

-1024 -824 -624 -424 -224 -24 176 376 576 776 976 1176 1376 1576 1776 1976 2176 2376

In this case the conversion of a voxel value to a 256 greyscale value is done using the

window centre and the window width that have been previously defined by the user

(see equation 3.1.3).

widthwindow

255
2

 widthwindowcentre window-voxel
voxel

×⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

= (3.1.3)

A small program has been developed to read the voxel values of 5 CT datasets and

counts the occurrence of each density value. Microsoft Excel was used to display the

results (see figure 3-4).

Figure 3-4. Number of voxels per density value. This graphic illustrates the most

recurrent density values in CT datasets.

The observations of the figure 3-4 can fall into 3 parts:

• Density values lower than -824 represent air or gas. This is also illustrated in the

figure 3-5.a. In this image, only ambient air outside the patient’s abdomen and

the gas (room air or CO2) that has been insufflated inside the patient’s colon is

visible. The axial image 3-5.a has been generated using a window width equal

to 100 and a window centre equal to -994. Therefore, we can calculate that the

image 3-5.a is made of density values in the range of -1044 to -944 HU (see

equation 3.1.4 and 3.1.5)

Voxel value
(in HU)

Number
of voxels

-994 +10000

14

a) Window centre = -994 HU c) Window centre = +1000 HUb) Window centre = 0 HU

1044
2

 widthwindowcentre windowmin value −=−= (3.1.4)

944
2

 widthwindowcentre windowmax value −=+= (3.1.5)

• We can see in figure 3-4 that most of the significant voxels have a density value

near 0. The axial image in figure 3-5.b has been generated using a window

width equal to 100 and a window centre equal to 0. This image illustrates that

soft tissues of a human body has a density value around 0 HU.

• Also, in figure 3-4, we can see that only few voxels have a density value superior

to 1000. It is also illustrated in figure 3-5.c that has been generated using a

window width equal to 100 and a window centre equal to +1000.

Figure 3-5. 2-D axial images with different density settings.

3.2 System requirements

Our system has been developed based on the following requirements:

1. The first target of this project is to train radiologists for colorectal cancer screening

using CTC. Therefore the first step is to extract and display 2-D axial images from

a CT Dataset.

2. In order to maximise the accessibility, the system must be implemented using

client-server architecture. Our end-users must be able to visualise 2-D slices of CT

datasets initially located on the server.

3. Once this objective has been achieved, the program must be extended in order to

create a training interface. This interface must allow radiologists to locate and

characterise polyps with the help of appropriate tools such as windowing, polyp

15

measurement and zooming.

4. When the program is able to store polyp candidates’ coordinates, the next step is to

develop an evaluation panel based on gold standard data previously gathered from

specialists. The system should display results as true-positives, false-negatives or

false-positives. In order to distinguish true-positive from false-positive polyps, the

system should calculate the distance (in the 3 dimensions) between the polyps

found by a trainee and the gold standard. If the distance is less than a specific

margin of error threshold, this polyp is a true-positive otherwise it is a false-

positive. The value of this margin of error should be equal to the length of a small

polyp which is around 5mm.

5. In addition, the training system must be embedded in a multi-user architecture that

provides a user identification process.

Concerning the response time of the system, our end-users should be able to browse

through the different medical images in a comfortable way. Therefore the response

time for displaying an image should be less than 0.5 seconds.

In order to guarantee an efficient response time, data compression can be used.

However, the requirement from our medical colleagues is to only use lossless

compression algorithms in order to preserve the original image quality.

3.3 Summary

The operation of our system can be divided into 3 parts.

1. First, the user enters the server URL in the address bar of his or her selected

browser. The home page of the system is loaded and the user is requested to enter a

login and a password.

2. Following this first step, the user can launch the training interface. In this interface

the user is able to highlight polyp candidates by flagging locations via circles

superimposed on 2-D axial images. Also, trainees have to define the size (in mm)

and the type of the polyp e.g. “sessile” or “pedunculated”.

3. Upon completion of their work, the trainee can run an automatic evaluation based

on gold standard information. The evaluation panel displays the results as true-

positive, false-negative and false-positive.

16

This approach has been achieved in two different ways. A first idea was to develop a

program made of Java server-side programs (e.g. Servlets and JSPs) in order to

remotely access the datasets’ pictures. The observation of the results for this first

version led us to develop a better implementation using a combination of Java server-

side programs and Applets. Details of both implementations are described in the

following chapters.

17

Chapter 4. Implementation

Figure 4-1. Block diagram of the architecture of the system

4.1 Training system made up of server side programs

4.1.1. Introduction

This initial implementation consists of developing a training system using Java

Servlets. Technically, this means that everything is implemented on the server side of

the system. On the client side, the user-interface of the system is made up of HTML

Network Interface

Internet browser displaying the interface

Server Side

Network Interface

Java Servlet

JSP

Java Bean

HTTP Server

Database holds the CT images and user information

HTTP

18

forms. Therefore, the end-user can interact with the server using standard HTML

pages. In this approach, colorectal cancer screening is limited to the use of axial

images.

The first part of this chapter introduces the operation of the system. Then, the next

part describes the implementation of the system and focuses on data exchange

between the server and the client, the design and functionalities of the user-interface.

Also, this part explains how the server generates and sends axial images to the user’s

browser. Finally, the evaluation of the system is discussed and the observations made

during this process are used to formulate further research directions and introduces the

next approach of the system.

4.1.2. Design of the system with server side programs

4.1.2.1. Operation of the system

As illustrated in the flowchart figure 4-2, this system can be used by either specialist

or trainee radiologists. Polyps flagged by specialists can be saved as the gold standard

on the server. Following this, trainee radiologists can try flagging polyp using the

same interface and then run an automatic evaluation.

The operation of this system is outlined in the following steps:

1. The first step is to enter the URL of the server in the browser’s address bar.

2. The user then chooses a CT dataset and a user profile (trainee or experienced

radiologist).

3. 2-D axial images of the chosen datasets are then sent to the client’s computer and

the user can flag potential polyps.

4. At this stage, the system provides 2 possibilities according to the user’s profile:

a. The trainee can run an automatic evaluation of his/her study.

b. The experienced radiologist can save his/her work as gold standard.

5. Finally, the user exits the system or studies another dataset.

19

Figure 4-2. Operation of the system.

4.1.3. Implementation of the system with server side programs

4.1.3.1. Data exchange between server and client

This system is based on client-server architecture and is implemented using Java

Servlets and combinations of JSPs and Java Beans. JSPs and Java Servlets are used to

generate HTML forms that are sent to the user’s browser via a network. These forms

use various HTML objects such as combo-box, text area, radio button, submit button

and allow the user to interact with the server. The forms are of type “post” so the

user’s browser always returns post type data to the server.

The home page of the system is loaded
on the user’s browser

The user chooses a
CT dataset and a user

profile

The user is a
trainee

no yes

The trainee runs the
automatic evaluation

The trainee’s results
are stored on the

server

The user exits the system

The user studies the
selected dataset

Overwrite the
dataset’s gold
standard file

20

Figure 4-3. Overview of data exchange between server and client. The server sends

HTML pages to the client. The client sends “post data” information to the server via HTML

forms.

Figure 4-3 illustrates the data exchange between the server and the client when a

trainee uses the system. For each step illustrated in this figure, an explanation is given

below:

1. Home page

a. A JSP sends a HTML form to the user’s browser.

b. After choosing a dataset and a profile, the user presses a submit button on the

form and his/her browser sends “post data” information back to the server.

2. Flagging potential polyps

a. A Java Servlet sends a HTML page displaying a JPEG image of a selected 2-D

axial image.

b. The user flags potential polyps using mouse clicks whose coordinates are sent to

the server as “post data”. Eventually, the trainee clicks on a submit button to run

the automatic evaluation.

Client Side

Server Side

HTML

Network

Java Servlet HTML

HTML

HTML

Java Servlet

JSP

Java

Bean

JSP

Java

Bean

Post data

Post data

Post data

1

2

3

4

21

3. The evaluation panel

a. The Servlet sends an evaluation panel to the trainee’s browser. This panel is a

HTML form and displays side by side the polyps found by the trainee and the

correct polyps from the gold standard.

b. The user interacts with the evaluation panel via the HTML form and the browser

returns “post data” information.

4. Finally, the Servlet sends a HTML page displaying the results of the trainee.

4.1.3.2. Layout using CSS

As the entire graphic interface is written in HTML, all style and layout information

are gathered into a Cascading Style Sheets (CSS) file. The flexibility of CSS allows

the HTML interface of the system to look more consistent. As a result, each of the

toolbars in the interface have the same appearance and the overall view of the system

looks homogeneous. In practical terms, a css file called “globalCSS.css” has been

created on the system. This file contains the layout information related to the HTML

objects that are used in the interface. For instance, the css file specifies the body that

will be used on every HTML page of the system:

 Note that when a family name is set to “Arial”, the World Wide Web Consortium

(W3C) recommends adding the generic family at the end e.g. “Sans-serif”.

In order to use the styles defined in the file “globalCSS.css”, each HTML page must

contain the code below in their header:

BODY { font-family: Arial, Sans-serif;

color: #111111;

font-size: 12px;

background-color : #333333;

margin: 0px;

}

<head>

 <link rel="stylesheet" type="text/css" href="globalCSS.css"/>

</head>

22

It is possible to define a specific style in “globalCSS.css” and to use it for a selected

HTML object. For instance, the style “InputButton” is defined in “globalCSS.css” as

followed:

 Note that there are two parameters “cursor” with different values. These

parameters are used to turn the mouse arrow into a pointer e.g. . Cursor:

pointer is the official way (as defined in the W3C recommendation) to change

the cursor to a pointer whereas cursor: hand is used for the versions of

Microsoft Internet Explorer prior to IE6.

The style “InputButton” can be used inside a HTML object such as a submit button by

using the parameter “class” as illustrated below:

4.1.3.3. Home page

The home page of this implementation (see figure 4-4) is implemented using a JSP

and a Java Bean.

Figure 4-4. The home page of the system. On this HTML page, the user can select a

dataset and a profile before starting the system.

.InputButton {color: #EEEEEE;

background-color: #660000;

font-size: 10px;

font-family: Arial, Sans-serif;

text-align: center;

cursor: pointer;

cursor: hand;

}

<input type="submit" class="InputButton" value="Enter!" />

23

In this interface the user can choose a CT dataset he or she wants to train with. The

Java Bean gets the names of the datasets stored in the server’s hard disk. These names

are displayed using a HTML combo-box on the JSP. Also, two radio buttons have

been implemented on the home page interface in order to allow the user choose a

specific profile before running the system. It is possible to log in as a trainee or as an

experienced radiologist. When the user clicks on the Ok submit button, the Servlet

reads the first image of the chosen dataset and sends it to the client’s browser.

4.1.3.4. Extract and display axial images

The Servlet reads the pixels of an image from a specific dataset using the class

RandomAccessFile. In order to extract a specific axial image from the dataset, the

Servlet skips the voxels of the previous image. For example, to display the axial

image highlighted in figure 4-5, we first need to skip

xelsheightInVoelswidthInVox n 2 ××× Bytes. After that, the axial image can be

displayed by reading values of the next xelsheightInVoelswidthInVox 2 ×× Bytes.

Figure 4-5. 2-D axial images in a CT dataset. A dataset can be represented as a cube

made up of a stack of axial images.

To display a 2-D slice using a Java program, each pixel is drawn on a

BufferedImage. The type of the BufferedImage must be a colour type such as

“TYPE_INT_RGB” or “TYPE_INT_ARGB” in order to be able to add coloured polyp

marks. A conversion must be performed to turn a voxel value from a 256 greyscale

X

Y

Z

Width

Height

2-D axial image

n

24

into a RGB (red green blue) value. A RGB value is stored in an integer type variable.

One integer = 4 Bytes = 4*8 bits. In this integer, 8 bits refer to the red component, 8

bits refer to the green component and 8bit refers to the blue component. The example

below illustrates the binary representation of a red pixel value.

A grey value is obtained if the 8 bits referring to the red, green and blue component

are the same. The example below illustrates a grey value.

In this example it can be seen that a grey value can be coded on 8 bits. The conversion

from a grey value to an RGB value simply consists of duplicating the 8 bits of the

grey value to the 3 colour components of an RGB value. The code below illustrates

this conversion:

A Joint Photographic Experts Group (JPEG) (Pennebaker et al. 1993) image is created

from the BufferedImage previously generated. In order to perform this task, a

method named makeJPG() has been created on the Servlet. To store a

BufferedImage as a JPEG, the type of this BufferedImage must be

TYPE_INT_RGB instead of TYPE_INT_ARGB. This can be explained by the fact that

TYPE_INT_ARGB includes transparency whereas the JPEG format doesn’t support it.

Finally this JPEG image is displayed via the HTML code of the Servlet using a

 tag.

4144959 = (0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1)2

Red Green Blue

16711680 = (0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0)2

Red Green Blue

Integer

int int_hex = voxel << 16 | voxel << 8 | voxel;

25

4.1.3.5. Navigation

The user can navigate through the axial images of a dataset using different features.

Figure 4-6. The trainee’s interface with a potential polyp (circle). On this interface, the

user can navigate through the axial images using the horizontal bar, the user can also use the

vertical bar on the left to select a specific density range and use the different options on the

right of the interface to zoom in or zoom out.

The user can use a HTML combo-box to select the axial image he/she wants to

display. At the top of the Servlet (see figure 4-6), a navigation toolbar contains a

forward and a backward HTML button.

26

Figure 4-7. Select and display an axial image. This flowchart describes the operation of

the different image navigation features.

These buttons increment or decrement the axial image number to display (see figure

4-7). Between these buttons, a “navigation bar” has been implemented. This bar is a

JPEG image that can be clicked on in order to instantly access a specific image of the

dataset. This is done using a HTML tag <input type=”image” name=”pic”>.

The x coordinate of the mouse click is retrieved using the code:

request.getParameter("pic.x"). In the present case, we only care about the x

coordinate because the navigation bar is horizontal. Finally, each time a new axial

image is selected, the combo box displays the current image number.

If a trainee flags a polyp on an axial image, a little mark is drawn on the navigation

bar. The user can then visualise which axial images already contain flagged polyps

and can easily access it by clicking on the appropriate mark.

Store the bufferedImage as

a JPEG image

The browser loads and displays the
selected axial image

Click on the
backward button

Click on the
forward button

Click on the
navigation bar

Select an axial image on
the combo-box

n++

Skip(xelsHeightInVoelsWidthInVox ××× n2)

n--
BarWidthnavigation

elsdepthInVoxXclickn ×
=

.n =selectedItem

read(xelsHeightInVoelsWidthInVox ××2)

Send the JPEG to the client’s browser

27

4.1.3.6. Flagging potential polyps

We use the HTML tag <input type=”image”> again to flag potential polyps on

axial images. The trainee can simply click on the centre of a polyp. The (x,y)

coordinates of the click will be retrieved and a circle will be displayed around this

point. In practical terms we draw the 2-D axial image to a new BufferedImage and

we draw a red circle around the (x,y) coordinate of the mouse click.

 An antialias is used to avoid a stair-step look for the polyp circle.

When a trainee clicks on a potential polyp, a toolbar appears at the bottom of the page

(see Figure 4-8). The trainee can use this toolbar to specify the type (sessile or

pedunculated) and the size (in mm) of the highlighted polyp. Finally, the trainee can

click on the button “Add polyp” to store the new polyp information. The X and Y

coordinates of the mouse click, the polyp’s type and the polyp’s size are written to a

text file on the server using the classes FileOutputStream and

OutputStreamWriter:

 The second parameter of the constructor of the class FileOutputStream is set

to true in order to append the new polyp information at the end of the text file if it

already exists.

 The class OutputStreamWriter is used to convert the polyp information in

UTF-8 format before writing it in the text file. Using this conversion, the text file

can be opened on the server side with a standard text file reader. If we only used

the class FileOutputStream, polyp information should have been converted

into Bytes.

Graphics2D graph = (Graphics2D)NewBuff.getGraphics();

graph.setRenderingHint (RenderingHints.KEY_ANTIALIASING,

RenderingHints.VALUE_ANTIALIAS_ON); //Set the anti-alias

FileOutputStream polypsFile = new

FileOutputStream(str_polypFile, true);

OutputStreamWriter wr = new OutputStreamWriter(polypsFile,

java.nio.charset.Charset.forName("UTF-8"));

wr.write(int_coordinate+"\n");

wr.close();

polypsFile.close();

28

Figure 4-8. Flagging a potential polyp. If the user clicks on the axial image, a circle is

drawn around the coordinates of the mouse click and a horizontal toolbar appears at the

bottom of the interface. On this tool bar, the user can select the type and the size of the new

polyp.

4.1.3.7. Polyp’s marks

If a trainee chooses to display a 2-D axial image that contains polyp previously

flagged, a circle is drawn around the polyps’ centre. When the user clicks inside a

polyp’s oval, the mouse click’s coordinates are retrieved and compared to the polyps’

positions from the polyp’s text file. Once the selected polyp has been found its type

and size are displayed using a HTML table at the bottom of the page.

4.1.3.8. Density setting

On the left of the interface (see figure 4-9), another toolbar gives the end user the

possibility to focus on a specific density. It works on two image characteristics which

are commonly used by radiologists; these are the window width and the window

centre. The window centre specifies the density value that we want to focus on. It is

then possible to use these parameters in order to highlight information associated with

29

a) Window centre=-850

Window width=800

b) Window centre=-383

Window width=800

e.g. the lungs (see figure 4-9.a) or the bones (see figure 4-9.b). The window width is

the amount of other density values that we want to display around our chosen window

centre.

Figure 4-9. Axial image with different density settings. The user can select an appropriate

density range using the vertical tool bar at the left of the interface.

Our end-users can adjust the window width and the window centre using different

features. At the bottom left of the interface, two combo boxes display the current

window width and window centre. If the user chooses a different value on one of

these combo boxes, the Servlet will generate the new axial image and the browser will

automatically load the new image. Also, a vertical bar has been implemented on the

left of the interface. The height of this bar represents the density range of the dataset

voxels (about -1024 to 2400HU). Inside this grey vertical bar, a white bar indicates

the current windowing setting. The height of the white bar indicates the window width

of the current axial image. This feature works as a scroll bar. If the user clicks on the

vertical bar, the y coordinate of the click will be retrieved and the new window centre

will be calculated:

Initially, the window width is equal to the density range of the dataset. Therefore, the

white bar fills the whole vertical bar and the window centre is in the middle of the bar

(see figure 4-8). The new axial image will be generated and the vertical bar will be

updated by placing the centre of the white bar at the y coordinate of the mouse click.

The two combo boxes will display the new window width and window centre values.

30

4.1.3.9. Zoom setting

A zoom feature is available on the main menu of the Servlet. Three radio buttons let

the user choose an appropriate zoom scale. The user can click on + or – buttons in

order to zoom in or zoom out. These buttons are HTML “submit buttons” which

simply increase or decrease the zoom factor in accordance to the chosen zoom scale

(see figure 4-10).

Figure 4-10. Zoom on a potential polyp. On the right of the interface, the user can select

an appropriate zoom area and zoom factor.

A third button (“O” for origin) has been implemented between the zoom in and zoom

out buttons. This button can be used to go back to the initial size of the axial image.

The image width and height are multiplied by this zoom factor and results are passed

as parameters to a getScaledInstance() method.

In order to navigate into the zoomed picture, there are 4 submit buttons named Left,

Right, Up and Down. As we draw the zoomed Image to the BufferedImage, x and y

values are given as parameters to the drawImage()method in order to apply the

required translation. Between the 4 buttons (left, right, up, down) a fifth button named

“0” stands here to go back to the initial position.

31

4.1.3.10. Result panel

The results of the evaluation are displayed via a dedicated interface (Figure 4-11).

Figure 4-11. The result panel displaying a true-positive polyp. In this example, a polyp

flagged by the trainee and the corresponding polyp from the gold standard. When the trainee

runs the automatic evaluation, a colour code is used on the navigation bar at the top of the

interface to indicate the true-positive (white), false-positive (yellow) and the false-negative

(red) polyps. Also on this page, the user can use drop down menus to display the false-

positive and false-negative polyps.

The user can instantly see the results by looking at the navigation bar at the top of the

screen. On this bar, white marks indicate correctly flagged polyps (true positives),

yellow marks indicate incorrectly flagged polyps (false positives) and red marks

indicate unflagged polyps (false negative). Images containing polyps flagged by the

trainee that match with the gold standard are displayed side by side under the

navigation bar. The user can then click on one of these pictures to switch it to full

screen mode. Two HTML combo boxes are located under these images. On the first

one, the trainee can choose to display one of the axial images containing false positive

polyps. On the second list, the user can choose to display one of the axial images

containing false negative polyps.

32

For each true positive, a score is calculated according to the type and size accuracy. A

HTML button is associated with each true positive. When pressed, this button

displays side by side, images matching the trainee’s selection with the gold standard.

Ultimately, a final score is calculated for the type and size accuracy for each true

positive polyp and the result is divided by the number of false negative polyps to yield

the final result.

4.1.4. Conclusion on the implementation using Java Servlets

Upon completion of this first version of the system, a demonstration was organised in

order to obtain suggestions from end users. Two radiologists evaluated the system

from the Mater Misericordiae Hospital in Dublin. These specialists were satisfied with

the interface and the different features of the system but they also found some issues

that will have to be taken in consideration for the next version of the system.
Tasks Time for server with

CPU: P4 1.6GHz RAM: 512MB
Time for server with
CPU: P4 2.8GHz RAM: 512MB

1. Creation of the BufferedImage 250ms 100ms

2. Reading polyp’s info from text file <1ms <1ms

3. Adding polyp’s marks and zooming 1875ms 750ms

4. Creation of the JPG picture 75ms 40ms

5. Transferring and display interface 700ms 700ms

Total time to display a new Image 2900ms 1590ms

Table 4-1. Overview of the time required for the different tasks.

1. The main issue clearly appeared to be the latency of the system. In other words, the

Servlet takes to much time to perform the requested tasks and transfer pictures

through the Internet. An overview of the length of time related to each step of the

program is displayed in table 4-1. The times on rows 1 to 4 were locally calculated

on the Servlet and the time on row 5 was obtained while requesting a new image

from a remote computer.

2. It would be useful to be able to use the mouse wheel to navigate though the images

of a dataset. This feature will also have to be added to the next version.

3. A few requests were made about the “evaluation” mode. First, each trainee should

have the possibility to login with a specific name and password in order to train

with several datasets and then send the results of their attempts to be evaluated.

4. Finally, the results should be formatted so that all the images containing false

positives should be visible together on the same screen and all the images

containing false negatives should be visible together on another screen.

33

4.2 Training system made up of Servlets and Applets

4.2.1. Introduction

Following the evaluation of the initial implementation, it appears that the best way to

meet the needs of our end users is to initially transfer the CT dataset from the server to

the client side. Once the dataset is stored on the client’s hard disk, the interface simply

needs to read the dataset and extract the relevant images. A Java Applet includes

libraries and methods that can be used to extract and display pictures of a CT dataset

stored on the client’s hard disk. Compared to HTML pages, an Applet provides more

advanced capabilities to create a user-friendly interface.

The following text gives an overview of data exchange between server and client and

explains the operation of the system. Then, the next part describes the implementation

focusing on the compression used on CT datasets, the Applet certification in order to

interact with the client’s hard disk, the servers used to exchange data with the client

and the different functions provided by the user interface.

4.2.2. Design of the system with Applets and server side programs

This approach uses a client-server architecture implemented over the Internet using a

combination of Java Servlets, JSPs and Java Applets. As a Java Applet is a client side

Java program that can be loaded on any standard browser, this approach provides a

high level of compatibility.

Communication between the server and the user’s computer is crucial to the operation

of the system and consists of 6 steps (see figure 4-12):

1. Each user has an account in order to allow monitoring of their training. Therefore,

the first step consists of logging into the system with a password. For this purpose,

when connecting to the server, the user’s browser loads a HTML login form that is

generated by a JSP.

2. The server then receives the login and password information and compares it to its

user database. If it matches, access to the system is granted and another HTML

form is sent to the user’s browser. This new form gives to the user the option of

choosing between starting a new training session and displaying their previous

results.

34

3. If the user chooses to undergo training, the user’s browser then loads a Java

Archive (JAR) and starts a Java Applet. This JAR is sent by the server and contains

the classes of the Java Applet and x-ray scout of CT datasets that are available for

training.

4. The trainee can then choose a CT dataset he/she wants to train with. The name of

the selected dataset is sent to the server.

5. To achieve the fastest response time to the interface, a compressed CT dataset is

sent from the server and is stored on the client’s hard disk (using a signed Applet).

2-D slices of the dataset are then uncompressed as soon as they arrive on the

trainee’s computer. It gives the user the ability to start working on the initial

images while the rest of the dataset is being transferred.

6. Upon completion of their work, the trainee can run an automatic evaluation based

on gold standard information previously gathered from colonoscopy records. The

Applet displays the results as true-positive, false-negative and false-positive.

Finally, the trainee can view a panel showing his/her new and previous results.

Figure 4-12. Overview of data exchange. The server sends HTML pages to the client and

the client returns post data information. When the Applet is started, the Applet

communicates with the server using data streaming.

Client Side

Applet

Server Side

Java Server Page

Network

Post data (“login-pass”)

Java Server Page

Java Server Page

Servlet

Servlet

Servlet

HTML (“login ?”)

HTML (“welcome”)

Post data (“run applet”)

Jar archive (applet classes

& overview thumbnails)

Stream (“dataset name”)

Stream

(dataset & overview)

Post data (polyp info)

HTML (“results”)

1

2

3

4

5

6

35

The following flowchart, figure 4-13 illustrates the operation of the system for the

user registered as a trainee and for the user registered as a specialist.

Figure 4-13. Operation of the system. This flowchart highlights the operation difference

between a trainee and a specialist using the system.

4.2.3. Implementation using Applets and server side programs

4.2.3.1. Dataset compression

The CTC datasets are large (~150MB) and the transfer of this information from server

to client would usually be a time consuming operation. To overcome this problem, a

Is the user
registered has a

trainee?

no yes

The user trains

on a dataset
he/she already
studied before

The user trains on a
new dataset

The user runs the
automatic evaluation

Evaluation results are
stored in the user’s

directory on the server

The user runs
the automatic

evaluation

The user exit the system

User enters the URL of the server
in the browser’s address bar

The specialist studies
a selected dataset

Overwrite the
dataset’s gold
standard file

The user logs in to the
system

36

loss-less compression algorithm has been developed to accelerate dataset delivery

over a network. The approach of the compression that is summarised below was

developed by colleague O’Halloran (2005).

This compression technique has two goals:

1. Of course the first goal is to achieve a good compression ratio.

2. The decoding process of this compression technique will be implemented on the

client-side (Applet). Therefore the second goal is to reduce excessive computation

and make the decoding process as fast as possible.

Compression of a CT dataset can be achieved by using a combination of different

techniques. A first step is to use the motion estimation and compensation method

(Zafar et al. 1991). This technique is based on the observation that there is a high

correlation between consecutive slices in a CT dataset. This can be seen by viewing a

difference image of two consecutive slices in figure 4-14.

Figure 4-14. Difference between two consecutive axial images. This image highlights the

fact that sending a difference image represents less data transfer than sending an entire axial

image.

37

The motion estimation and compensation technique generates frames containing most

values around 0. Therefore, the next step of our compression technique must be very

efficient to encode values in this area.

As a second step, an idea is to avoid the waste of data due to the fixed type of our

dataset’s voxel values. The type of a voxel value is “short" (1 short = 2 Bytes = 16

bits). A “short” can contain a value in the range of (-32768 to 32767). In our case, the

density values that we want to encode can have a value in the range of (-1024 to

around 2400 HU). In other words, even the minimum and the maximum voxel’s

values can be coded using only 12 bits + 1 sign bit instead of the 16 bits used by a

“short”: -1024 = (1110000000000)2; 2400 = (0100101100000)2 .

The second compression technique consists of writing the length, in bits, that the

values occupy followed by the binary value. Also, the sign of the value is given by an

additional bit located at the end of the binary value.

Beyond this point, this technique will be referred to as “limited length encoding”. The

example below illustrates this approach for the encoding of the value -21:

In order to make this approach more efficient, the 4 bits dedicated to the length are

written only if the length varies from a value to the next one. For instance, if 3 values

with the same length are encoded successively, the 4 bits length appears only once

before the 3 values as illustrated below:

If the next value has a different bit length, we first insert a “change length” code made

of 2 bits: “01” and we write the new 4 bits length. For instance, if two values 31 and

32 are sent successively, this “change length” code will be inserted as illustrated

below:

0 1 1 0 1 0 1 0 1 1
Length (6) Value (21)

LSB

Sign (-)

MSB

1 0 0 0 1 0
Value (17)

0 1 1 0
Length (6) Sign (+)

1 1 1 1 0 0
Value (30) Sign (+)

1 0 1 1 0 0
Value (22) Sign (+)

38

All binary representations are written using the minimum bits possible. For instance,

the binary representation of the decimal value 31 is (11111) 2 and not (011111)2.

Therefore, the binary representation of a voxel’s value will always start with a “1”.

This explains how the decoder will be able to determine the difference between a

“change length” (01) and a voxel’s value starting with a “1”. In our CT dataset’s, most

of the neighbouring pixels have similar values. Therefore, the 4 bits length code is not

written too often.

The example below illustrates how to successively encode the values 4, 2 and -1.

As it can be seen, at values near 0 there is an excessive waste of bits due to the

necessity of writing a lot of “change length” code and 4 bits length.

At this point, a solution is to use a hybrid compression scheme using the “limited

length encoding” approach previously described and another technique to encode

values around 0 with efficiency. The Huffman coding (Huffman 1952) is a very

efficient technique for the encoding of a limited amount of different values. Using

Huffman coding requires creating a list of symbols “alphabet” where each data

represents a “change code” a voxel value. A vast alphabet would involve an excessive

computation for the decoding process and this would be in contradiction with the

second goal of our compression approach.

A brief experiment has been conducted in order to find the exact region where voxel

values should be encoded using Huffman coding in order to reach the optimum

efficiency. The best result was obtained when using Huffman coding to encode values

between -15 and +15 HU.

1 0 0 0

(4)

0 1 0 0

Length (4) (+)

0 1
Change
length

1 0 0

(2)

0 0 1 1

Length (3) (+)

0 1
Change
length

1 1

(1)

0 0 1 0

Length (2) (-)

1 1 1 1 1 0
Value (31)

0 1 1 0
Length (6) Sign (+)

1 0 0 0 0 0 0
Value (32) Sign (+)

0 1 1 1
Length (7)

0 1
Change
length

39

To indicate that we are changing the encoding technique from Huffman coding to the

initial “length limited encoding” technique or vice-versa, the bits “00” is inserted.

Also, the 4 bits length code is not inserted if we are switching from Huffman

encoding to “length limited encoding” and if the voxel value has a binary

representation equal to 6 bits (including the sign bit). In other words, when switching

back to “length limited encoding” the 4 bits length will not precede values from 16

(10000)2 to 31(11111)2.

When encoding using Huffman coding, a “sign code” is used to make the difference

between the positive and the negative voxel values. This “sign code” must be added to

the Huffman alphabet. When switching from the Huffman coding to the “limited

length encoding”, we need to indicate whether the next value will require 6 bits or

more to be encoded. For that reason, two more symbols must be added to the Huffman

alphabet.

The symbol “up 1” indicates that the next value will require 6 bits (including the sign

bit) and the symbol “up many” indicates that the next value will be encoded using

more than 6 bits. The table 4-2 summarises the symbols used for Huffman encoding.

Symbol Label

Sign code
Up 1

Up many
(0)
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)
(10)
(11)
(12)
(13)
(14)
(15)

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18

Table 4-2. Symbols encoded using Huffman codes.

40

These symbols are sorted according to their frequencies, (number of occurrence). The

Huffman coding principle is to assign fewer bits to the values having the most

occurrences. See table 4-3, an example of this process.

Sign code 1 1
Up 1 1 0 1

Up many 0 0 0
(0) 0 0 1 1 0
(1) 0 0 1 0 1
(2) 0 0 1 0 0
(3) 0 0 1 1 1
(4) 0 1 0 0 0
(5) 0 1 0 0 1
(6) 0 1 0 1 0
(7) 0 1 0 1 1
(8) 0 1 1 0 0
(9) 0 1 1 0 1
(10) 0 1 1 1 0
(11) 0 1 1 1 1
(12) 1 0 0 0 0
(13) 1 0 0 0 1
(14) 1 0 0 1 0
(15) 1 0 0 1 1

Table 4-3. Huffman codes array

In the previous example, the encoding of values 4, 2 and -1 using the “limited length

encoding” took 25 bits. The new example below illustrates the benefits of using

Huffman coding to encode the same values. As it can be seen in table 3, the Huffman

code associated to the voxel value 4 is “01000” and the Huffman code associated to

the voxel value 1 is “00101”.

Using Huffman coding, the encoding of values 4, 2 and -1 takes 19 bits. In other

words, in this example we saved 6 bits.

0 1 0 0 0

(4)

0 0 1 0 0

(2)

1 1
Sign
code

0 0 1 0 1

(1)

0 0
Switch to
Huffman

41

As it can be seen in table 3, on this example, the Huffman code associated with the

voxel “u1” is “101”. The example below illustrates how to successively encode the

values 18, -1 and 16 using the final compression approach:

This compression technique ensures a 50% compression rate and divides transfer time

by 2. Datasets are compressed on the server side prior to transmission. Also, the

Applet interface is able to decompress and display 2-D images as soon as they are

received on the user’s hard disk. The compression of a selected CT dataset takes

approximately 6 minutes using a PC with a 2.8 GHz Intel Pentium 4 processor and

512 MB of RAM.

4.2.3.2. Creation of a simulated scout x-ray

A simulated scout x-ray of the CT dataset is displayed on a dedicated floating window

in the user-interface. To obtain this image, we give to each of the (x, z) values, the

average of the values present on the corresponding y axis as illustrated in figure 4-15.

Figure 4-15. Generate a simulated scout x-ray. The resulting image is obtained by

calculating the average density on Y.

After that, this picture is stored using the Joint Photographic Experts Group (JPEG)

format using the method makeJPG(). This image is generated on the server prior to

transmission and is included in the Jar archive that also contains the Applet classes.

CT Dataset

X

Z Dataset overview

X

Average
density on YY

Z

1 0 0 1 0 0

(18)

0 1 1 0

Length (6)

0 0

Switch to
Huffman

0 0 1 0 1

(1)

1 1

Sign
code

1 0 1

Up 1

1 0 0 0 0 0

 (16) (+) (+)

42

A Java application has been developed to help the administrator of the system to

generate simulated scout x-ray images. The administrator can choose to generate the

x-ray image of a specific dataset or generate x-ray images of every dataset stored

inside a folder. Moreover, the compression algorithm has been implemented in this

application. Therefore, the administrator of the system can generate x-ray images and

compress new datasets using the same application.

Figure 4-16. Administration tool to generate a simulated scout x-ray. The administrator

can use 4 sliders in order to highlight the colon on the scout x-ray.

Four sliders have been implemented in the interface (see figure 4-16). The widow

width and the window centre are used to focus on the appropriate density values. The

sliders “Y min” and “Y max” are used to focus on a specific section of the colon and

to skip the rest of the dataset as illustrated in figure 4-17. The use of these four

parameters can greatly improve the rendering of the colon.

43

Figure 4-17. Focusing on the appropriate region on Y. It is possible to focus on the

relevant region around the colon and prevent the remaining information to overload the

scout x-ray.

The program used to generate the simulated scout x-ray starts by reading the header of

the selected dataset in order to get the “widthInVoxels”, “heightInVoxels” and the

“depthInVoxels”. After that, the whole dataset is stored into an array using the method

readFully() of the class DataInputStream.

 Using readFully to store the whole dataset in random access memory (RAM)

takes a few seconds at the beginning. However after this delay, moving the sliders

of the interface is a real time operation.

The process used to generate a scout x-ray image is described in figure 4-18. In this

flowchart, “limit down” and “limit up” are calculated from the window width and the

window centre (see equation 4.2.1 and 4.2.2).

2
 widthwindowcentre windowuplimit += (4.2.1)

2
 widthwindowcentre windowdownlimit −= (4.2.2)

If the mean voxel value “v” is inferior to limit up and superior to limit down, the pixel

value of the scout x-ray image is calculated using the equation 4.2.3.

()
widthwindow

255downlimit v
 widthwindow

255
2

 widthwindowcentre window-v
pixel ×−

=
×⎥
⎦

⎤
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −

= (4.2.3)

X
Y min

Y

Z

Y max

44

Figure 4-18. Generate a simulated scout x-ray. This flowchart illustrates the process used

to calculate the average density of a chosen region of the CT dataset and store the result on a

JPEG image.

yes

no

z<depthInVoxels

Store the overview

as a JPEG image

End

Start

new array[widthInVoxels]
y = y min

array[x] = array[x]+voxel[x][y]
x++

yes no
x<widthInVoxels

no y<y max

x = 0

x = 0 yes

yes
x<widthInVoxels no

miny -maxy
Array[x]v =

yes

nov<limit down

pixel = 0

yes

v>limit up

pixel = 0

z = 0

no

Draw pixel to bufferedImage at (x,z)
x++

()
 widthwindow

255downlimit vpixel ×−
=

y++

z++

45

When we use an array in a Java program, this array is stored in the RAM of the

computer. In the present case, our whole CT dataset is stored in the RAM. It is

possible to calculate that a CT dataset is made of approximately 140MB which is far

superior to the 64MB default RAM size allocated to the Java virtual machine.

Therefore, the application must be executed on the command prompt with the

parameters “-Xmx512m” and “-Xms512m” that allows the application to use up to

512Mo of RAM. The following commands can be written inside a text file. If the

extension of this text file is changed to “.bat”, this file becomes an executable file.

The administrator can double-click on this file and the application will start.

4.2.3.3. Digitally signing a Java Applet

To be able to write the CT dataset on the client’s hard disk, the Applet classes must be

packed into a Jar archive and this Jar must be digitally signed.

4.2.3.3.1. To generate a Jar archive

The Applet classes and the relevant files that are used by the Applet must be packed

into a Jar archive. A command line is used to create the Jar archive “CTC_Tutor.jar”

using the executable program “jar” that is available in the Java Development Kits

(JDK). This command must be executed on the command prompt or in a “.bat” file.

 The last dot is used to specify that all the files present into the directory “classes”

should be packed into the Jar archive.

As illustrated in figure 4-19, a Jar archive contains a directory called “META-INF”.

META-INF contains the manifest file “MANIFEST.MF” which holds information

about the Jar such as the name and version of the program used to create the Jar

archive.

jar cf C:/CTCTutor/web/CTC_Tutor.jar -C

C:/CTCTutor/build/web/WEB-INF/classes .

set path=C:\Program Files\Java\jdk1.5.0_02\bin

java -Xmx512m -Xms512m -classpath

C:/Project/CTCTutor/build/web/WEB-INF/classes

overview.OverviewMaker

46

Figure 4-19. Pack the Applet files into a Jar archive.

4.2.3.3.2. The hash algorithm (Secure Hash Algorithm) SHA-1

SHA-1 is a hash algorithm that has been designed by the national security agency

(NSA). SHA-1 is used to “hash” the files present inside the Jar archive. More

precisely when SHA-1 is applied to a file, it returns a 160 bits digest. An SHA-1

digest is also known as a hash or a digital fingerprint. In theory, SHA-1 will never

create the same digest for 2 different files. Therefore SHA-1 digests can be used to

check that two files are identical and that they contain the exact same Bytes.

4.2.3.3.3. To generate a RSA key pair

A RSA key pair must be created using the executable program Keytool. Keytool is

also available in the Java Development Kits (JDK). A RSA key pair consists of a

private key and a public key. The private key will be used to sign the SHA-1 digests

related to the files present inside the Jar archive. The public key will be used by the

client to cryptographically validate the signed SHA-1 digests. The following

command is used to create a RSA key pair named “key_vsg” and identified by the

alias vsg.

Following this step, the key pair “key_vsg” is stored in the server’s hard disk.

Jar archive

keytool -genkey -keyalg RSA -keystore key_vsg -alias vsg -

keypass 8x5Lkdf4 -storepass 8x5Lkdf4 -validity 999 -dname

"CN=Vision Systems Group DCU, OU=Java Code, O=vsg dcu,

L=dublin, ST=, C=IE, EMAILADDRESS=luautev@eeng.dcu.ie

DC=vsg, DC=dcu"

47

4.2.3.3.4. Digitally signing the Jar archive

The Applet should be normally signed by a certificate authority (CA) such as

VeriSign and Thawte. A CA is responsible to verify our identity and assert that we are

the authors of this program. However, our Applet has been self-signed as it would be

costly and cumbersome to have each test Applet signed by a CA. The command

below is used to self-sign the Jar archive.

The signature information is added to the manifest “MANIFEST.MF” of the Jar. Our

digital signature is stored inside the file “VSG.RSA”. Also the signature file

“VSG.SF” contains SHA-1 digests of every file present inside the Jar.

Figure 4-20. Digitally signing the Jar archive. A SHA-1 algorithm hashes each file of the

Jar and the remaining digests are stored inside the file VSG.SF after being signed using the

RSA private key.

jarsigner -storepass 8x5Lkdf4 -keystore key_vsg

C:/CTC_Tutor/web/CTC_Tutor.jar vsg

SHA-1

SHA-1

SHA-1

SHA-1

SHA-1

SHA-1 digest of Cube.class

SHA-1 digest of thumb 007...

SHA-1 digest of thumb 001…

SHA-1 digest of CTC Tutor…

SHA-1 digest of Picture.class

VSG.SF Signing

RSA Private key

RSA Public key

RSA key-pair

VSG.RSA

Jar archive

48

As illustrated in figure 4-20, when signing the Jar archive, SHA-1 digests are

calculated for every file present inside the Jar. The resulting digests are signed using

the private key of the RSA key-pair. Finally, the signed digests are stored inside the

signature file “VSG.SF” and the public key is stored inside the file “VSG.RSA”.

“jarsigner” is an executable programs that is available in the Java Development Kits

(JDK). In order to test a new version of the system without having to type again all

these command lines in the command prompt, a “.bat” file named as been created.

The first line of this file set the path to the JDK directory:

Also, the file related to the previous RSA key pair is deleted before creating a new

one.

Finally, the following code is used on the HTML page to run the Applet:

 The class and the Jar archive must have the same name or the Applet will not start.

Using this code, the Jar archive “CTC_Tutor.jar” is sent from the server to the client

side.

4.2.3.3.5. Receive and verify a digitally signed Jar archive

The public key present inside the certificate “VSG.RSA” is used to check the

signature of the digests that are present inside the file “VSG.SF”. Finally, the

decrypted digests are compared with SHA-1 digests calculated from the files present

inside the Jar archive (see figure 4-21).

 As we self-signed our Applet instead of having the Applet signed by a CA, when the

Applet is started, a warning is displayed (see figure 4-22).

del key_vsg

set path=C:\Program Files\Java\jdk1.5.0_02\bin

<applet code=" CTC_Tutor.class" archive="CTC_Tutor.jar"

width="956" height=615”>

49

Figure 4-21. Verifying a Jar archive. When the Jar is received on the client side, digests

stored in the file VSG.SF after decrypted using the RSA public key. These decrypted digests

are then compared one by one with the digests calculated on each file of the Jar. If each

digest is identical, it means that the Jar hasn’t been altered during its transfer.

Figure 4-22. Security warning before starting the Applet. The user is informed that the

Applet hasn’t been digitally signed by a CA and asks the user if he/she wants to trust the

named publisher.

Check
Signature

RSA Public key

VSG.RSA

VSG.SF

encrypted digest of CTC Tutor…
encrypted digest of thumb 001…
encrypted digest of thumb 007…

encrypted digest of thumb 009…
encrypted digest of thumb 009…
encrypted digest of thumb 007…

SHA-1
SHA-1
SHA-1
SHA-1
SHA-1
SHA-1

digest of CTC Tutor…
digest of thumb 001…
digest of thumb 007…

digest of thumb 009…
digest of thumb 009…
digest of thumb 007…

Decrypted digests

digest of CTC Tutor…
digest of thumb 001…
digest of thumb 007…

digest of thumb 009…
digest of thumb 009…
digest of thumb 007…

Compare
one by one

If equal, ok to
run the applet!

Jar archive

50

4.2.3.4. Dataset selection

When running the Applet, the Jar archive is transferred from the server to the user’s

computer and thumbnails of each dataset’s simulated scout x-ray are displayed on the

first page of the interface (see figure 4-23).

Figure 4-23. Dataset selection. On this page, the user can select the dataset he/she wants to

train on.

The trainee can simply click on the thumbnail of the CT dataset he or she wants to

train on. On the server side, each registered user has an individual directory. Each

time a new CT dataset is studied, a new file containing the user’s results is stored in

the appropriate user’s directory. The flowchart, figure 4-24 illustrates the process used

to display the appropriate thumbnails according to the user profile. When a user starts

the Applet, each CT dataset that has already been studied is marked with a star “*”.

The user can then visualise which of the CT datasets he or she has already trained on.

In addition, the trainee may choose to train again on a dataset but his/her results will

not be overwritten. Therefore, the monitoring of their training will be reliable.

51

Figure 4-24. Dataset selection. This flowchart illustrates the process used to display the

relevant scout x-ray.

4.2.3.5. Multi-user server

Three approaches have been tested to establish connection between the server and the

client in order to send CT datasets. The first idea is to simply include the CT dataset

in a Jar file. The implementation of this approach is very easy but very limited. The

second approach involves developing a dedicated server application intended to keep

A trainee logs on and
starts the applet

Get the name of the
next dataset stored on
the server’s hard disk

Display the
dataset’s

name
followed by

a star

Is there
another dataset to

display?

no

yes

A file related to this
dataset exists in the

user’s directory

no

yes

Display the
dataset’s

name

The user studies the
selected dataset

A specialist logs on and
starts the applet

Get the name of the
next dataset stored on
the server’s hard disk

Display the
dataset’s

name
followed by

a star

Is there
another dataset to

display?

yes

A file
related to this

dataset exists in the
gold standard

directory

no

yes

Display the
dataset’s

name

no

A file
related to this dataset

exists in the gold
standard directory

yes

no

52

listening to client request. This server uses a socket on a specific port. The socket

cannot work on the standard HTML port (port 80) because this port is already used for

the home page of the system. This aspect can be a problem with some firewalls which

block port other than port 80. Another approach has been developed using a simple

Servlet. These three approaches are described below.

4.2.3.5.1. Encapsulate a dataset into a Jar file

A CT dataset can be easily packed inside a Jar using the “jar” program that is included

in the JDK. After a dataset has been included in the Jar, the dataset is compressed and

its size is divided by approximately 2. However this approach has 2 drawbacks. First,

loading a Jar archive containing the CT dataset takes an extensive amount of time.

During this time, the user is forced to wait without any information related to the

loading progress. Also a Jar archive must be created for each dataset. The dataset and

the Applet classes are included inside the same Jar. Therefore, updating the Applet

code involves generating the Jar archive for each dataset again.

4.2.3.5.2. Server using sockets

A CT dataset can be sent from the server to the client using an ObjectInputStream and

an ObjectOutputStream. When the user clicks on the selected x-ray thumbnail of the

dataset he or she wants to train on, the Applet sends the name of the selected dataset

to the server. In practical terms, the Applet creates a new socket on port 5050 using

the following code:

A socket can be described as a tube connecting the client to the server. After that, the

class ObjectOutputStream is used to send data through this socket from the Applet to

the server and the class ObjectInputStream is used to receive data from the server.

This new approach allows the Applet interface to display a 2-D slice as soon as it is

received on the client’s computer.

On the server side, a class “Server” is responsible for welcoming the new clients. This

class contains a thread dedicated to wait for new clients to connect. When the Applet

creates a new socket to send the name of the selected dataset, the class “Server”

accepts it and instantiates the class “HandleConnection”. The new socket is given as a

parameter of the constructor of the class “HandleConnection”. Then,

Socket socket=new Socket(this.getCodeBase().getHost(),5050);

53

“HandleConnection” can start sending the dataset to the new client (see figure 4-25).

Figure 4-25. Sending a selected dataset from the server to the client.

As illustrated in figure 4-26, the class “Server” is only instantiated once and is

responsible to wait for new clients. The class Handle Connection is instantiated each

time a new client creates a socket.

Figure 4-26. Handle connection of several clients. The server classes welcomes a new user

and passes the corresponding.

Client Side

Server Side

Send the dataset name

through the Socket 3

Class Server
Client 3

(creates Socket 3)

Socket 3

Network

Handle Connection 1

Exchange via socket 1
Client 1

Handle Connection 2

Exchange via socket 2

Client 2

Handle Connection 3

(communicates only

with Client 3)
Exchange via Socket 3

Client 3

Client Side

Server Side

Dataset name
Class Server

(Waits for new clients)
Applet

(Select a dataset)

Handle Connection

Dataset
name

Send the selected

compressed dataset

Network

54

A simple interface has been implemented on the server (see figure 4-27). This

interface allows an administrator to start and stop the server and provides a

monitoring of data exchange with the different remote computers.

Figure 4-27. Interface of the server.

 To use a scroll bar on a text area, we need to use the method

setCaretPosition() of the class jTextArea each time a new line is

appended.

4.2.3.5.3. Server using a Servlet

This approach consists of sending a CT dataset from the server to the client using the

Java class URLConnection:

When the user clicks on the scout x-ray thumbnail corresponding to the dataset that he

or she wants to train on, the Applet sends the name of the selected dataset to the

server. In practical terms, the Applet creates a PrintWriter:

URL url=new URL(getDocumentBase(), "servlet/datasetProvider");

URLConnection conURL = url.openConnection();

conURL.setDoOutput(true);

jTextArea.append("Connecting client:"+ str_localIP+"\n");

jTextArea.setCaretPosition(jTextArea.getDocument().getLength());

55

Following this step, An ObjectInputStream is used to receive data from the server:

This approach also allows the Applet to display a 2-D slice as soon as it is received on

the client’s computer.

On the server side, a class “datasetProvider” is responsible to welcome the new

clients. This class is a Java Servlet and is instantiated by the Applet. This Servlet uses

an ObjectOutputStream to send each compressed slice of the dataset to the client

(see

figure 4-28).

Figure 4-28. Sending a selected dataset from the server to the client.

In this implementation, a CT dataset is transferred through the standard HTML port

80. At the beginning, this approach was supposed to be the best solution to pass

firewalls. The experience demonstrated that the firewall of the Mater hospital in

Dublin blocks the Applets which transfer data through the port 80. On the other hand,

computers inside the Mater hospital can download datasets via the Applet

implementing the server with socket approach. As a result, both approaches (server

Server Side Client Side

Dataset name Applet

(Select a dataset)

Send the selected

compressed dataset

Network

Class datasetProvider

ObjectInputStream is = new

ObjectInputStream(conURL.getInputStream());

PrintWriter pw=new

printWriter(conURL.getOutputStream(), true);

pw.println(str_datasetSupine);

pw.close();

56

with socket and server using Servlet) have been implemented in the Applet. The user

can choose the server he or she wants to use before starting the Applet.

4.2.3.6. A separate thread to display the downloading progress

Following the dataset selection, the Applet will start downloading the chosen dataset

from the server to the end user’s hard disk. The downloading progress is displayed on

the Applet interface to inform the end-user. For the user registered as a specialist, a

half transparent mask progressively reveals the simulated scout x-ray as illustrated in

figure 4-29.

Figure 4-29. Downloading progress for a specialist.

To display the downloading progress while downloading the dataset, a new thread

must be implemented by the Applet. The new thread is exclusively used to download

the CT dataset while the mean thread of the Applet keeps listening to the user’s

actions. Therefore, the specialist can start working on the initial images while the rest

of the dataset is being transferred. The type of the BufferedImage used to create

the mask must be TYPE_INT_ARGB. This type includes a transparency component

that is necessary to create a half transparent mask.

For the user registered as a trainee, the downloading progress is displayed in front of

the interface and prevents the user from accessing the interface until both supine and

prone datasets have been downloaded (see figure 4-30).

The main advantage of this approach is to be able to start timing the reading time at

the same position for every trainee whether they have broadband or a slow

connection. The reading time is one important factor to later establish a learning curve

of the CTC training.

57

Figure 4-30. Downloading progress for a trainee.

Technically, the main Applet class called “CTC_Tutor” must implement Runnable.

After that, the class Thread is instantiated and the method start() is called.

 It is possible to specify the priority of the thread. The priority of this new thread

must be low in order to grant the maximum priority to the main thread of the

interface in case a specialist wants to use the interface while the Applet is

downloading the datasets.

When the method start() is called, the method called run() is actually executed.

This method run() must be implemented on the Applet. In practical terms, this

method holds the code used to receive, uncompress and store a dataset in the client’s

hard disk. The dataset is stored as a file using a DataOutputStream. Each time a

new slice is written in this file, the progress bar is updated.

Thread thread = new Thread(this);

thread.start();

thread.setPriority(Thread.MIN_PRIORITY);

58

4.2.3.7. Retrieve 2-D slices on the client’s side

Each 2-D axial image of the selected dataset is received, uncompressed and stored in a

file in the user’s hard disk. The transfer of a compressed dataset can fall into three

parts:

• The server starts by sending the header of the dataset as a Hashtable object.

• After that, the server sends the Huffman symbols.

• The server finally sends the compressed slices Byte by Byte.

From the last point, each bit of the received Bytes goes through the decoding process

as illustrated in the flowchart, figure 4-31. This process starts by reading 2 bits in

order to check if a “change length code” (01)2 or a “Switch to Huffman” (00)2 code is

present.

1. If the value of the first 2 bits is equal to (01)2, the 4 next bits are used to find the

new length value. After that, the voxel value is retrieved by reading a number of

bits defined by the new length.

2. If the value of the first 2 bits is equal to (00) 2, the program reads the next bits and

retrieves the corresponding Huffman symbol (see table2).

a. If the Huffman symbol equals to “sign code”, the next voxel value equal (- next

Huffman symbol).

b. If the value of the Huffman symbol is “up 1”, the 6 next bits will be used to

retrieve the voxel value.

c. If the value of the Huffman symbol is “up many”, the 4 next bits are used to find

the new length value and the next voxel value is retrieved by reading a number

of bit equal to the new length.

d. If the value of the Huffman symbol is different than “sign code”, “up 1” or “up

many”, the next voxel equal this Huffman symbol.

3. After an axial image has been received and decoded with the combination of

“limited length encoding” and Huffman coding, the original axial image is

retrieved after applying the motion estimated and compensated technique.

59

Figure 4-31. Decoding process. This flowchart illustrates how each axial image is decoded

bit by bit when it is received on the client side.

Read 2 bits

bit 1 = 0

Entering Huffman
region bit 2 = 0 yes

yes

Read next 4 bits
for new length

Label=“sign”

yes

no

Retrieve a voxel
value by reading
“length-1” bits

Sign bit = 1

Add voxel to
slice array

Invert the
voxel value

yes

no

voxel = Label * sign
Add voxel to slice array

yes

no

no

Label=“up”

Label=“up many”

no

no

length=6

length=0

sign = -1

yes

yes

Slice array
is full

no

New slice array

Slice array
is full

yes

End of
dataset

no

yes

Store the new slice

on the hard disk

End

no

Start receiving voxels

Huffman Region

Motion estimated
and compensated

60

4.2.3.8. Generate an axial image

Once a 2-D axial image of a dataset has been transferred from the server to the

client’s hard disk, the user can display it via the Applet interface. The user can specify

the slice number that he/she wants to display using the navigation tool provided by the

Applet. To read a dataset from the Applet, the class DataInputStream is used.

 The method readFully() is used to read an entire axial image. This approach is

faster than reading voxels using a RandomAccessFile class as we did in the first

implementation.

This BufferedImage is dawn to a jLabel using the setIcon() method. The

trainee is requested to highlight polyp candidates by flagging locations via circles

superimposed on 2-D axial images (see figure 4-32). Also, trainees have to define

their level of confidence, the size (in mm) and the type of the polyp e.g. “sessile” or

“pedunculated”. When flagging new polyps, ticks and circles are drawn on the

navigation slider and on the simulated scout x-ray respectively in order to show which

of the dataset slices contain identified polyps.

Figure 4-32. Flagging a potential colorectal cancer polyp. When the user clicks on a 2-D

slice, a dedicated tool bar appears at the bottom of the interface and the user can select

his/her level of confidence, the type and the size of the new polyp.

61

4.2.3.9. Reformatted images

4.2.3.9.1. Generate a coronal image

A recent study conducted by Sebastian (2006) has highlighted that radiologists using

coronal reformatted images instead of axial images reports more findings and a higher

degree of confidence in routine abdominal CT. This highlights the fact that the

interface of our system must be able to generate coronal images in addition to axial

images.

Figure 4-33. A 2-D coronal image in a CT dataset. There are as many coronal images as

there are pixels along the Y axis.

Two techniques have been tested to generate coronal images. The most intuitive

technique involves reading one specific width of each axial image in the dataset. For

instance, to read the 2-D coronal image highlighted in figure 4-33, the program skips

elswidthInVox×× n 2 Bytes and reads the next elwidthInVox×2 Bytes. After that,

the program incrementally skips elswidthInVox xelsheightInVo 2 ×−×)1(Bytes and

reads elwidthInVox×2 Bytes until it reaches the end of the dataset. In this thesis, this

technique will be referred to as “skip Bytes”.

X

Y

Z

2-D coronal

image

n

62

Figure 4-34. Coronal image.

The second technique involves using the method readFully() of the class

DataInputStream. In this thesis, this technique will be referred to as “readFully”.

Usually, a program runs much faster using data previously stored inside the RAM

than reading the relevant voxels one by one in the hard disk. The limitation of the

standard JVM prevents the program from storing a whole dataset inside the RAM.

However, it is possible to incrementally store each axial image of the dataset inside

the RAM and use the relevant width of each slice. Technically, the program

incrementally stores an axial image (elswidthInVoxoxels heightInV2 ×× Bytes)

inside an array, reads the relevant voxels and overwrites this array with the next axial

image.

There are as many coronal images as there are pixels along the Y axis of an axial

image (512). Sebastian pointed out that the increasing number of axial images

generated by modern CT scanners directly increases the interpretation time of axial

images whereas interpretation time of coronal images remains the same. This is

another reason why it is interesting to train radiologists for colorectal cancer screening

using coronal images (see figure 4-34).

4.2.3.9.2. Generate a sagittal image

Modern analysis tools usually provide sagittal image visualisation in addition to

coronal and axial images. Many studies of the colon are based on these three views

e.g. (Aufort et al. 2005).

63

Figure 4-35. A 2-D sagittal image in a CT dataset. There are as many sagittal images as

there are pixels along the X axis of an axial image.

The techniques “skip Bytes” and “readFully” previously discussed can be used to

generate a sagittal image. This time, the skip Bytes technique consists of reading only

one pixel of each axial image’s width. For instance, to read the 2-D sagittal image

highlighted in figure 4-35, the program starts by skipping n2× Bytes. Then, the

program reads the next voxel and skips 22 −× elwidthInVox Bytes. After that, the

program will incrementally read one voxel and skip 22 −× elwidthInVox Bytes until

it reaches the end of the dataset.

Figure 4-36. Sagittal image.

To generate a sagittal image using the “readFully” technique (see figure 4-36), each

axial image is incrementally stored inside the RAM of the client’s computer and the

relevant height of each axial image is used to generate the sagittal image.

X

Y

Z

2-D

sagittal

image

n

64

4.2.3.9.3. Realistic reformatted image

The height of a reformatted image (coronal or sagittal) is equal to the number of axial

images in the dataset. In the datasets that are used in this project, the number of axial

images per dataset is about 250. Therefore the height of a reformatted image is 250

pixels. The width of a coronal image is equal to the width of an axial image (512

pixels) and the width of a sagittal image is equal to the height of an axial image which

is also 512 pixels. The reformatted image must be stretched in order to be a realistic

representation of the patient’s body (see figure 4-37).

Figure 4-37. Stretching a coronal image to realistic proportions.

The realistic proportion of a reformatted image can be found by using the

“voxelWidth” or “voxelHeight” and the “voxelDepth” which are present in the header

of a dataset. The voxelWidth and voxelHeight are the number of millimetres that one

pixel represents on the width and on the height of an axial image. The voxelDepth can

be described as the thickness (in millimetres) of an axial image. For example, the

actual width of a coronal image in millimetres is equal to the width of an axial image

multiplied by the voxelWidth (see equation 4.2.4) and the height is equal to the

number of axial image inside a dataset multiplied by the voxelDepth (see equation

4.2.5).

voxelWidthels widthInVoxthcoronalWid ×= (4.2.4)

voxelDepth elsdepthInVoxghtcoronalHei ×= (4.2.5)

65

The actual dimensions of sagittal images in millimetres (see figure 4-38) are

calculated using the equation 4.2.6 and 4.2.7.

tvoxelHeighxels heightInVodthsagittalWi ×= (4.2.6)

voxelDepth elsdepthInVoxightsagittalHe ×= (4.2.7)

Figure 4-38. Stretching a sagittal image to realistic proportions.

The Java method getScaledInstance() is used to stretch the initial reformatted

image. The last parameter of this method is the interpolation method.

image_SCALE_SMOOTH is chosen as the interpolation method in order to give higher

priority to image smoothness than scaling speed. Time spent to resize a

BufferedImage is approximately 0.5 seconds using a PC with an Intel Pentium 4,

2.8GHz and 512MB of RAM.

4.2.3.9.4. Region of interest for reformatted images

Computation time spent to generate reformatted images with realistic proportions was

calculated using a PC with a 2.8 GHz Intel Pentium 4 processor, 512 MB of RAM and

XP. Forty reformatted images have been generated with the “skip Bytes” method and

forty reformatted images have been generated with the “readFully” method.

 Coronal image Sagittal image

 Skip Bytes Readfully Skip Bytes Readfully

Before buffering 1.4 7.7 4.7 8.7 Full

image After buffering 0.8 1.1 1.2 1.1

Table 4-4. Average time (in second) to generate reformatted images with “skip

Bytes” and “readFully” methods.

66

After generating a first group of reformatted image, the computer that was used for

this test automatically buffered the dataset inside the RAM and the subsequent

reformatted images was generated in approximately 1 second with each method. The

computer stores inside the RAM memory, data that are repeatedly read in the hard

disk. Unfortunately, the first group can vary from 10 to over 30 images. This number

depends of the availability and the size of the RAM. Also, some computers with

128MB of RAM will never be able to store a dataset which is usually about 150MB.

Table 4-4 shows that the “skip Bytes” method is more efficient than the “Readfully”

method to generate a reformatted image before the dataset has been buffered inside

the RAM. After the buffering of the dataset, table 4-4 shows that the “Readfully”

method is slightly more efficient to generate a sagittal image. However, 0.1s

difference is not significant for this test and it is possible to consider both methods

equivalents for generating a reformatted image after buffering.

A response time equal to a few seconds is not comfortable for our end-users. To

tackle this issue, a solution is to generate a region of interest of the reformatted image

(see figure 4-39).

Figure 4-39. Axial image and region of interest of a coronal image.

67

Table 4-5, shows that time taken to generate the region of interest of a coronal image

with the “Skip Bytes” is slightly more efficient than the “Readfully” method. Time

spent to generate the region of interest of a sagittal image is similar with both

methods. As a result, the method “Skip Bytes” is more efficient in most cases and this

method has been implemented on the Applet.

Coronal image Sagittal image

Skip Bytes Readfully Skip Bytes Readfully

Region of interest

(using 100 axial)
0.5 0.6 0.6 0.6

Region of interest

(using 25 axial)
0.3 0.4 0.4 0.4

Table 4-5. Average time (in second) to generate different region of interests.

On the interface, a horizontal slider and a vertical scrollbar surround the reformatted

image. The user can drag the horizontal slider to increase or decrease the height of the

region of interest and can drag the vertical slider to display another section of the

image.

4.2.3.10. Dataset navigation

Using the Applet interface, the navigation through 2-D slices can be performed by

dragging a slider or clicking on a forward/backward button. Also, to meet the

requirement of our medical colleagues, the rotation of the mouse wheel can be used to

scroll images. The listener method simply retrieves the number of mouse wheel

notches (which may be positive or negative) and adds it to the currently displayed

picture’s number.

The interface also provides a resizable window displaying the simulated scout x-ray

of both supine and prone datasets. The height of the scout x-ray image represents the

depth of the dataset (along z axis). Therefore, if an axial image is displayed, the user

can directly click on the associated scout x-ray to jump to the desired slice. The

interface will display the axial image that is equal to the y coordinate of the mouse

click on the scout x-ray. A horizontal red line illustrates the position of the current

axial image in the dataset (see figure 4-40).

68

Figure 4-40. Simulated scout x-ray illustrating the position of one of the first, middle and

last axial image in the dataset

If a coronal slice is displayed, a rectangle drawn on the simulated scout x-ray

illustrates the position of this coronal slice in the dataset (see figure 4-41). The first

coronal image is represented as a large rectangle whereas the last one is represented as

a small rectangle in the centre of the scout x-ray.

If the user clicks in the centre of the scout x-ray, the interface displays the last coronal

slice in the dataset whereas if the user clicks on the border of the scout x-ray, the

interface jumps to the first coronal image of the interface.

Figure 4-41. Simulated scout x-ray illustrating the position of one of the first, middle and

last coronal images of the dataset.

The simulated scout x-ray corresponding to a sagittal image illustrates the position of

the current sagittal slice as a vertical red line (see figure 4-42).

69

Figure 4-42. Simulated scout x-ray illustrating the position of one of the first, middle and

last sagittal image of the dataset.

If the user clicks on a polyp circle drawn on a simulated scout x-ray, the

corresponding image of the interface will jump to the relevant slice and the interface

will display the appropriate panel used to modify or delete this specific polyp.

4.2.3.11. View tabs and synchronisation

The system is designed to handle 2 different images at the same time; one on the left

and another one on the right of the interface (see figure 4-43). The user can choose

among 6 possible views on the left and 6 possible views on the right by clicking on

one of the tabs located between the navigation slider and the image. For each image, 3

tabs refer to the supine dataset and 3 tabs refer to the prone dataset. The name of the

tabs referring to the supine dataset starts with a S whereas the tabs referring to the

prone dataset starts with a P. Using these tabs it is possible to choose between supine-

axial, supine-coronal, supine-sagittal, prone-axial, prone-coronal and prone-sagittal.

By default, the left image is a supine-axial and the right image is a prone-axial. This

configuration has been chosen by our medical collaborators. Our end-users can also

display 2 images of the same dataset. In this case, when the user clicks on one image,

the system gets the coordinates of the mouse click and determines the most relevant

slice that should be displayed on the second image. For example the user can choose

to display a supine-axial on the left and a supine-sagittal on the right (see figure 4-43).

In this case, if the user clicks on the supine-axial, the interface will display the sagittal

slice that is equal to the x coordinate of the mouse click. If the second image is a

coronal image and the user clicks on the axial image, the interface will jump to the

coronal slice that is equal to the y coordinate of the mouse click. This synchronisation

70

works with every image of the same dataset. This way if the user flags a polyp on an

image in one view, the interface displays the image for the relevant slice in the second

view and a circle is drawn around the coordinates of the polyp that has be reported on

the second image.

Figure 4-43. Image synchronisation. A polyp flagged on a supine-axial image is

automatically reported on a supine-sagittal image and the system focuses on the relevant

region of interest

If the second image is a reformatted image such as a sagittal or a coronal view, the

interface automatically focuses on the relevant region of interest.

4.2.3.12. Measurement

A measurement tool has been implemented in the Applet interface (see figure 4-44).

This feature is accessible from the “Action” menu. The user clicks on the picture to

specify the first point and click once again to specify the end point. Therefore, we

calculate the differences between these points on the x and on the y axes. Then, we

convert these pixel differences into millimetres. To do so, we multiply the difference

on x by the voxelWidth and the difference on y by the voxelHeight (voxelWidth and

voxelHeight are written on the header of the dataset). At last, we simply deduce the

length between the two points using the Euclidean distance (see equation 4.2.8).

71

()[] ()[]22 - - tvoxelHeighstartYendYvoxelWidthstartXendXlength ×+×= (4.2.8)

Figure 4-44. Zoom window and measurement tool. The length between two mouse clicks

is indicated at the bottom of the interface.

4.2.3.13. Zoom Window

The Applet also offers the possibility to display a zoom window. This window works

as a magnifying glass which can be moved with the mouse over the picture. To

generate this view, we firstly crop the original bufferedImage thanks to the

getSubimage()method:

After that the cropped image is enlarged using the method getScaledInstance():

At last, the image is drawn to the jLabel using the class Graphics2D and the

setIcon() method (see figure 4-44).

Image im = buff.getScaledInstance(zoomWidth, zoomHeight,

Image.SCALE_SMOOTH);

BufferedImage buff = buffImage.getSubimage (x, y, zoomWidth

/ zoomFactor, zoomHeight /zoomFactor);

72

4.2.3.14. 3-D Visualisation

3-D visualisation is also supported and is intended to be used for “problem solving”

i.e. differentiate between polyps and folds. The algorithm used to generate 3-D images

is based on the work of Zhanlin (2005) and is using a volume rendering technique

called “ray-casting” (Levoy 1988). Ray-casting has two advantages:

• Ray-casting offers a high processing speed which ensures real-time volume

rendering.

• With regards to the accessibility, ray-casting is a very interesting technique as it

can be implemented by using standard Java classes.

As explained earlier in this chapter, a CT dataset is a stack of 2-D axial images. The

combination of these 2-D images creates a volume that can be rendered using a 3-D

algorithm. Ray-casting is an image order algorithm intended to render 3-D scenes to

2-D screens. The approach of ray-casting can be described as drawing a 2-D

representation of a volume by calculating the distances between the eye of the

observer and the voxels of the volume (see figure 4-45). When explaining the

operation of ray-casting, these distances are usually referred to as “rays”.

Figure 4-45. Observer watching the projection of a volume on a projection plane.

A 3-D subsection of the dataset is stored in a 3-D array. A loop is used to cast rays

from left to right. As it was said earlier, rays go from the observer to the volume.

When a ray hits a voxel of the volume, this voxel is reported on the projection plane

(see figure 4-46).

Volume

2-D representation of a volume
on a projection plane

Observer

x

z

y

73

Figure 4-46. Projection of a cube on a projection plane (viewed from above). Ray-casting

is used to represent a volume on a 2-D image using distances between the observer and the

volume’s voxels.

The figure 4-46 illustrates the projection of the corner of a volume on the width of a

projection plane. On this figure, the distance “b” is the distance between the centre of

the projection plane and the corner of the volume. The distance “a” is the projected

distance of “b”. The x coordinate of the voxel’s projection is equal to aw
+

2
. The

distance “p” is calculated in relation with the width of the projection plane; “w” and

the angle called the field of view (FOV) is calculated as follows:
)

2
tan(

2
w

FOV
p = .

Experience shows that 60 degree is a suitable value for the FOV. The width of the

projection plane can be selected by the user. Therefore the distance p is calculated and

stored in a variable. The user also selects “i”; the distance between the projection

plane and the volume is also selected by the user. By observing figure 4-46 it is

possible to write:
d
b

p
a
= and pid += . Each voxel of the volume is reported on the

width of the projection plane using the following equation:
d

pbwx ×
+=

2
. The

distance “b” is given by the position of the voxels v0 and v1 inside the volume.

The same operation is done on the height of the projection plane to find the y

coordinate of each voxel’s projection plane.

Volume
Projection plane

Observer

a
b

d

p

Centre of the
projection plane

FOV v0

v1

i

x

z

w

74

The projection plane is stored in a single dimension array called “pixels[]” and this

image is created using the class MemoryImageSource:

A 3-D subsection of a CT dataset is equivalent to a solid cube. Each voxel of this cube

has a density value. Therefore, in order to see the inner surface of the colon, voxels

referring to air or gas must be removed from the 3-D representation (see figure 4-47).

Figure 4-47. A 3-D rendering of the inner surface of the colon. This image has been

generated with a threshold equal to -200 HU. A polyp is visible in the middle of this image.

This is achieved by exclusively taking into consideration, voxels that have a density

value above a specific threshold. Subsequently, the threshold can be selected by the

user to display information related to a specific density. For instance, if the threshold

is set to 350 HU the resulting 3-D image represents a section of the skeleton of the

patient (see figure 4-48).

MemoryImageSource source = new MemoryImageSource(width, height,

pixels, 0, width);

Image image = Toolkit.getDefaultToolkit().createImage(source);

75

Figure 4-48. 3-D rendering of a dataset subsection with a threshold superior to 350 HU.

With this threshold value, the 3-D algorithm offers a view of the skeleton e.g. a section of

the spine.

To run the 3-D visualisation, the user uses the mouse to draw a 2-D area on one of the

2-D views e.g. axial, coronal or sagittal and the 3-D view will be generated using

several slices on either side of the original 2-D image (see figure 4-49).

Figure 4-49. The 3-D interface. After the user has specified a region of interest, a volume

is displayed in a floating window.

The system also allows our end-users to turn the zoom window into a 3-D view. In

this case, the zoomed area is used as the region of interest. Again, the 3-D view is

built using a few slices on either side of the zoomed axial image as illustrated in

figure 4-50.

76

Figure 4-50. Generate a 3-D view from a zoomed area.

The 3-D view fits into a cube and it is possible for the user to drag the mouse over this

cube to rotate in the x and y directions. Several parameters can also be adjusted in real

time by dragging individual sliders. These parameters include depth, distance and

opacity. Depth is the number of 2-D slices used to create the 3-D view. Distance can

be described as the distance between user’s eyes and the 3-D representation. Finally,

the opacity is a parameter based on density values and can be used to highlight

information associated with the bones or lungs.

4.2.3.15. Gold standard Evaluation

Upon completion of their work, the trainee can run an automatic evaluation based on

gold standard information. This gold standard information can be gathered from

specialists using our system. For the user who is registered as a specialist, the

interface will provide more choice to define a polyp’s type. Where trainees can only

choose between "sessile" and "pedunculated" polyps, specialists can choose between

“sessile”, “pedunculated”, “ileocecal valve”, “stool tagging”, “fold” etc. It is therefore

possible for a specialist to highlight potential false positives. For instance, if a trainee

marks polyps as sessile while it is the ileocecal valve, the evaluation panel will mark

this polyp as a special false-positive and will display the correct type. Consequently,

the evaluation process is intended to determine four possible types of polyp:

1. true-positive: polyps found by trainee which match with gold standard.

2. false-positive: polyps found by the trainee which don’t match with gold

standard.

3. Special false-positive: polyps found by the trainee that have been identified by the

specialist as a potential false-positive.

4. False-negative: gold standard polyps which weren’t found by the trainee.

In order to distinguish true-positive from false-positive polyps, the system compares

each polyp’s coordinates to the gold standard using the Euclidean distance:

77

On the interface a colour code is used to highlight the different polyp categories. For

instance, a red circle drawn on the 2-D axial image identifies a false-positive polyp

whereas a green circle identifies a true-positive polyp. Coloured ticks are also drawn

on the navigation slider and on the simulated scout x-ray image to show the location

of these specific polyps (see figure 4-51).

Figure 4-51. The evaluation panel. On this panel, a colour code is used on the navigation

bar, on the 2-D images and on the scout x-ray to indicate the true-positive (green), false-

negative (blue) and false-positive (red) polyps.

Thanks to this colour code, the user can instantly visualise his results by looking at the

navigation sliders or the simulated scout x-ray images. With regard to the processing

of the different polyp categories, we took advantage of Object Oriented Programming

if

(222)()()(max ZtraineeZgoldYtraineeYgoldXtraineeXgold −+−+−≥Δ)

 polyp = True-Positive;

else

 polyp = False-Negative;

78

(OOP) concepts. In practical terms, a Java class with private data and methods has

been implemented in order to create a polyp category object (See figure 4-52). The

private data are arrays used to store the 3 coordinates, type and size of polyps. The

methods are used to set, get, modify and delete a polyp of a specific category. This

object is used to maximise the flexibility of the user interface as it is possible to

retrieve and highlight polyps of a chosen category.

 Polyp Category
Private Data

• int[] X
• int[] Y
• int[] Z
• String[] Type
• int[] Size

Methods
• SetPolyp()
• GetPolyp()
• ModifyPolyp()
• DeletePolyp()

Figure 4-52. Polyp Category Object

To create a new polyp category, the class PolypCategory is instanciated:

(PolypCategory truePositivePolyps=new PolypCategory ()). The polyp

categories used in this system are:

1. Polyps flagged by a trainee on a supine dataset.

2. Polyps flagged by a trainee on a prone dataset.

3. Polyps flagged by a specialist on a supine dataset.

4. Polyps flagged by a specialist on a prone dataset.

5. True-positive polyps on supine dataset.

6. True-positive polyps on prone dataset.

7. False-positive polyps on supine dataset.

8. False-positive polyps on prone dataset.

9. False-negative polyps on supine dataset.

10. False-negative polyps on prone dataset.

11. Polyps from each category on supine dataset.

12. Polyps from each category on prone dataset.

Polyps compared to gold standard
polyps

Gold standard polyps

Polyps flagged by the trainee that match
with the gold standard

Polyps flagged by the trainee that don’t
match with the gold standard

Polyps flagged by specialists that weren’t
flagged by trainees

79

4.2.3.16. Display all pictures of a specific polyp category

Regarding the result panel, another request of our medical colleagues is to display

every true-positive, false-positive or false-negative at once on the same screen.

Figure 4-53. Floating window displaying polyp thumbnails of a specific category. After

the running the automatic evaluation, the user can click on a tab at the top of the scout x-ray

window to display thumbnails of a specific category.

When the user runs the automatic evaluation the system displays 3 new tabs on the

scout x-ray window as illustrated in figure 4-53. These tabs correspond to the

different polyp categories and are identified on the interface by their abbreviation e.g.:

“F-P” for false-positive. The number of thumbnails displayed in a tab is equal the

number of polyps of the corresponding category. For example if there are 2 false-

positive polyps on the same axial image, two thumbnails will be displayed, one for

each of these polyps. When the user clicks on a thumbnail, the system displays the

associated image along with the information about the specific polyp.

To display the thumbnails of a polyp category, the method getNbPolyp() of the

class PolypCategory is used to get the total number of polyps (totalPolyp) of a

specific category. Then, the number of rows and columns is calculated as illustrated in

the flowchart, figure 4-54.

80

Figure 4-54. Calculating the number of rows and columns in the scout x-ray window.

Finally, each thumbnail is generated and displayed in the right cell. To find out the

appropriate translation on the X axis of each thumbnail, the modulo1 (symbolized as

“%”) of the thumbnail’s number “t” by the number of columns is calculated and then

multiplied by the width of a cell. Finally, the translation on the X axis is the absolute

value of the result: ()int_coltwidthnXtranslatio 0
0×=

1) The modulo is the remainder of a division.

totalPolyp > int_col x int_row

no

yes

End

p=0, int_row=0, int_col=0

p++;

p =
totalPolyp

int_row>int_col

int_col++;

yes no

int_row++;

yes

no

81

To find out the appropriate translation on the Y axis, the thumbnail number is

multiplied by the number of rows and the result is divided by the total number of

thumbnails. Following this, the floor1 of the result is multiplied by the height of a cell:

⎟
⎠
⎞

⎜
⎝
⎛ ×

×=
rThumbtotalNumbe

int_rowtheigtnYtranslatio floor

When the user clicks on a specific thumbnail, the system compares the coordinate of

the mouse click to each thumbnail’s position. As illustrated in the following flowchart

(figure 4-55), for each thumbnail “t”, Four values; Xmin, Xmax, Ymin and Ymax are

calculated using the modulo and the floor method. If the coordinates of the mouse

click are included inside these four values, the selected thumbnail is found and the

interface displays the associated image.

Figure 4-55. Find the selected thumbnail from the coordinates of the mouse click.

1) The "floor" of a number is the largest integer less than or equal to the number. Every integer is its

own floor.

clickX<int_Xmax &&

clickX>int_Xmin &&

clickY<int_Ymax &&

 clickY>int_Ymin

no

yes

t = 0

t ++

Display the image
corresponding to the
selected thumbnail

()int_coltwidthXmin 0
0×=

() widthint_coltwidthXmax +×= 0
0

rThumbtotalNumbe
int_rowtdbl ×

=

()dblheightYmin floor×=

() heightdblheightYmax +×= floor

82

4.3 Multi-user architecture

4.3.1. Introduction

The access to the training system needs to be restricted to a list of authorised users.

Gluecker (Gluecker et al. 2002) states that “before applying [CTC], the radiologists

involved require a controlled learning period”. The main purpose of this multi-user

system is to identify the user in order to store the training results and provide

monitoring of the training. Several Java server pages (JSP) are used to make this

multi-user system and help our end-users to manage their accounts. The following

paragraphs give details of this system that has been developed in addition to the

training system.

4.3.2. Login panel

To access the system, the user simply enters the appropriate URL in the address bar of

his/her selected browser. The home page (see figure 4-56) is loaded and the user can

run the identification process or access the registration page. If the user enters his/her

login and password and presses the submit button “Enter!”, the Java Bean associated

with this JSP compares the user entries with the logins and passwords stored in a text

file on the server. If the user entries match the data stored on the server, access is

granted to the user. If a wrong password is entered, the server saves the login and

password that have been submitted, along with the date and the IP of the user. This

data is stored in a text file that can easily be examined by the system administrator.

If the access is granted, the system reads the profile that has been assigned to this

user. At this stage, there are 3 different scenarios in conjunction with the possible

profiles:

a. A trainee is able to train for colorectal cancer screening and run an evaluation of

his or her work based on gold standard information.

b. A specialist is able to flag polyps using the same interface as a trainee and can

save his or her study as gold standard information.

c. An administrator is able to create and delete user accounts and access to the

trainee’s results.

83

Figure 4-56. Home page of the system.

4.3.3. User registration

A registration panel has been implemented on the system (see figure 4-57).

Figure 4-57. The registration panel. A new user can register and enter the relevant

information on this page.

This registration page is made up of a simple HTML form. This form is used to

collect the basic information that we need to identify a user like the name, surname,

84

organisation and email. The user is also required to enter additional information

related to his/her possible previous experience with abdominal CT. This additional

information is important to later establish a relevant learning curve and measure the

education ability of the training system.

When the user presses the submit button, information is stored in a text file on the

server and an email is sent to the administrator. Methods from the libraries

javax.mail.* and javax.mail.internet.* are implemented to the Java Bean. The

following code is used to send an email and a specific subject to 2 different recipients:

4.3.4. User possibilities

The flowchart figure 4-58 describes the different functionalities offered to the user.

Properties props = System.getProperties();

props.put("mail.smtp.host", "pine.eeng.dcu.ie");

Session session = Session.getDefaultInstance(props, null);

MimeMessage msg = new MimeMessage(session);

msg.setFrom(new InternetAddress("ctctutor@eeng.dcu.ie"));

msg.setRecipients(MimeMessage.RecipientType.TO,InternetAddre

ss.parse("ctctutor@eeng.dcu.ie", false));

msg.setSubject("Subject of the email");

msg.setText("text to send");

msg.setHeader("X-Mailer", "LOTONtechEmail");

msg.setSentDate(new Date());

Transport.send(msg);

85

Figure 4-58. Multi-user system. This flowchart gives an overview of the operation of the

system that surrounds the applet.

Enter the URL of the
server in the browser’s

address bar

Home page of the
system

The user enters
his/her login and

password

User’s login and password are
compared to the login file of

the server

Login and
password
correct

no

yes

Warning:
“Information incorrect,

please try again”

Option page

Start applet Display results

Change password

Enter and re-enter the
new password

Warning
“Try again”

The 2 entries
are different

no

yes

Notice
“Success”

Store new
password

Store new
results

86

After running the identification process, the user reaches an option page (see figure 4-

59).

Figure 4-59. Option page

From here the user can start the training Applet, display his/her previous results or

change his/her password. Also a text box has been added to collect some feedback

from our end-users.

4.3.5. Result page

A result page (see figure 4-60) is implemented to display the trainee’s result as the

number of true-positive, false-positive, false-negative and the reader time. This result

page is accessible from the option page and from the training Applet. Precisely, once

the trainee has run the automatic evaluation, the result page is accessible from the File

menu of the Applet. The advantage of having this result page displayed via an HTML

page instead of an Applet is the possibility for our end-users to select copy or print

their results. Also, our end-users can access this result page without having to load the

training Applet.

87

Figure 4-60. Result page. This page shows the number of true-positive, false-negative,

false-positive and the reading time for each dataset previously studied.

4.3.6. Administration panel

If the user entries match with the administrator login and password, the JSP will

generate the HTML page related to the administration panel (see figure 4-61).

88

Figure 4-61. The administration panel. After a new user register on the system, an email is

sent to the administrator. The administrator can then use this page to create the new account,

delete an existing account or display the results of a trainee.

This panel allows an administrator to create a new user account. A first combo box is

used to select the new user’s profile e.g. trainee and specialist. On this panel it is also

possible to delete an existing account and display the results of a specific trainee.

89

4.3.7. Conclusion for the implementation using Servlets and Applets

The main advantage of the second implementation is to transfer the relevant CT

dataset on the client side in order to offer a short response time to the interface. This

implementation provides new features such as the measurement tool and navigation

using a simulated scout x-ray. Also, the development of 3-D visualisation and features

involving mouse scrolling couldn’t be achieved on the initial implementation that is

exclusively made up of Servlets. The new possibilities offered by the Applet make the

interface of the system more user-friendly.

90

Chapter 5. Testing & Results

5.1 Testing

5.1.1. Introduction

To be able to run the Applet, our end-users must use a recent browser that is

compatible with signed Applets. Here are some examples of compatible browsers:

• Netscape Navigator, version 4.0 and above.

• Microsoft Internet Explorer on Windows, version 4.0 and above.

• Firefox 1.0 and above.

The server keeps a log as a text file of users connecting and downloading datasets. In

this chapter, the transfer time of CT datasets from the server to the end-users has been

extracted from this log. The server of this system is located in a lab of the Vision

Systems Group in Dublin City University.

5.1.2. Test of the automatic evaluation

The primary function of the system is the automatic evaluation process, which

informs the trainee about the number of TP (true-positive), FN (false-negative) and FP

(false-positive) on his/her study. The system saves the results in a text file on the

server machine in order to monitor the progress of the trainee. As described in chapter

4, the evaluation consists of comparing each polyp’s coordinates to the gold standard

using the Euclidean distance:

222)()()(max ZtraineeZgoldYtraineeYgoldXtraineeXgold −+−+−≥Δ

During our tests, the value of maxΔ was 6mm which corresponds to the length of a

small polyp.

Gold standard polyp coordinates are stored in a text file on the server. When running

the automatic evaluation, the server stores all polyp coordinates found by the trainee

in another text file. Following a first test on 8 datasets, it is possible, to display, side

by side, the coordinates of the polyps from the gold standard, the coordinates of the

polyps found by the trainee and the result that has been given to the trainee via the

evaluation panel, for each dataset.

91

 Gold standard Trainee Displayed result

Dataset Xg Yg Zg Xt Yt Zt TP FN FP

10051prone No polyp No polyp 0 0 0

10051supine No polyp No polyp 0 0 0

 114 238 138

100 284 164 101 284 165

 230 282 185

114 351 187 114 355 186

148 255 195 149 256 194

17384prone

254 286 196 255 290 195

4 0 2

 383 299 119

384 263 161 385 263 162

255 244 178 256 245 176

 323 314 185

258 257 196 259 257 194

17384supine

325 328 204 324 327 204

4 0 2

120221prone 171 277 229 172 272 229 1 0 0

246 287 200

265 381 199 263 338 205 120221supine

268 336 205

1 2 0

139455prone none none none 117 211 82 0 0 1

407 231 81 409 235 81
139455supine

355 144 188
1 1 0

Table 5-1. Result displayed on the evaluation panel after comparing coordinates

of polyps found by a trainee to the gold standard.

Using the data presented in Table 5-1, we can see that tests show that the results given

by the system after running the automatic evaluation are correct. Therefore, the

training system is reliable.

92

Dataset 10051prone:

 The gold standard indicates that there is no polyp.

 The trainee did not flag any polyp.

 Consequently the result 0 TP, 0 FN and 0 FP is correct.

Dataset 17384prone:

 The gold standard indicates that there are 4 polyps.

 The trainee found 6 polyps and 4 of them matched with the gold standard.

 Therefore, the two remaining polyps are false-positives and the result is

correct.

Dataset 120221supine:

 The gold standard indicates 3 polyps.

 The trainee found one polyp and this polyp matches with the gold standard.

 Therefore, the 2 remaining polyps are false-negatives, the result is correct.

5.1.3. Response time of the interface

Response time of the user interface has been recorded using a PC with a Pentium 4,

2.8GHz and 512MB of RAM.

Coronal Sagittal

Axial
Full image

Region of

interest (60)
Full image

Region of

interest (60)

0.06 1.4 0.4 4.7 0.5

Table 5-2. Response time (in seconds) for the different image.

5.1.3.1. Response time of axial images

As seen in table 5-2, the average time spent to generate an axial image is 0.06s. This

response time is acceptable for our end-users. Navigation through axial images using

mouse scrolling or dragging the navigation slider can be considered as real time

operation.

Another relevant test of the interface consists of timing an iteration of lumen tracking.

Using axial images, it takes approximately 45 seconds to visually navigate through the

entire colon.

93

5.1.3.2. Response time of reformatted images

By default the Applet generates a reformatted image using 60 axial images. In other

words, the default height of the region of interest is equal to 60 pixels. Thanks to the

synchronisation between axial and reformatted images (as described in chapter 4), the

region of interest automatically focuses on the relevant section of the reformatted

image. Therefore the default height of the region of interest should be sufficient. As

illustrated in table 5-2, time spent to generate a reformatted image is about 0.4s.

5.1.4. Transfer time of CT datasets between server and client

Transfer time of CT datasets from the server to the end-user has been optimised by the

use of compression (as described in chapter 4). This compression reduces the size of

CT datasets by 50%. The interface of the system displays prone and supine images of

the same patient side by side. Therefore using compression, the transfer time of these

2 datasets is equivalent to the transfer time of an uncompressed dataset.

The transfer time of datasets using two different server programs has been measured

over a local network. The same server computer and client computer were used for

both tests. The size of the dataset used for this test is 120MB.

Server type Transfer time

Server on port 8080 18.8min

Server on standard HTML port (port 80) 20.6min

Table 5-3. Transfer time of CT datasets.

Table 5-3 shows that the server on the standard HTML port which uses the Java class

URLConnection is slightly more efficient than the other server program which uses

a socket.

The log file in the server has recorded transfer time of 11 CT datasets from the server

to the computer of end-users outside the university. These datasets have been

transferred using the server on standard HTML port. Most of our end-users are

accessing the system from Dublin.

94

Dataset name Dataset size
Number of

transfer

Minimum

transfer

time

Maximum

transfer

time

Average

transfer

time

10051supine 124MB 4 8.24min 37.55min 18.8min

10051prone 130MB 3 8.22min 41.18min 20.6min

120221supine 113MB 1 7.58min 7.58min 7.58min

120221prone 128MB 1 9.44min 9.44min 9.44min

166669supine 150MB 1 13.10min 13.10min 13.10min

166669prone 156MB 1 14.54min 14.54min 14.54min

Table 5-4. Transfer time of CT datasets using the server on standard HTML port.

Using the data in table 5-4, the average transfer time per dataset is equal to 16.5 min.

As requested by our medical colleagues, the interface of the system displays a supine

CT dataset and a prone CT dataset side by side. Table 5-4 shows that the average

transfer time of two datasets from the server to the client is approximately equal to

half an hour.

Over a local network, transfer time of a 150 MB dataset from the server to the user’s

hard disk is approximately 1 minute. In other words, users using the system inside the

same building as the server can start working with the training system after about 2

minutes of data transfer.

5.2 Discussion

If our end-user wishes to perform colorectal cancer screening using reformatted

images exclusively, the region of interest should be extended to the entire coronal or

sagittal image. As shown in table 5-2 the average time spent to generate an entire

coronal image is 1.4s and an entire sagittal image is 4.7s. This response time is not

tolerable to our end-users. Therefore, this remote training system is dedicated to the

colorectal cancer screening using axial images and the use of reformatted image is

limited to problem solving purpose.

95

This system uses different data transfer techniques between the server and the client

over a network. For instance, data streaming guarantees the maximum speed for the

transfer of a CTC dataset. Using the dedicated compression algorithm, the transfer

time of a CT dataset from the server to the user’s hard disk is divided by 2.

Unfortunately, the transfer time of datasets from the server to a distant computer is

considerable. Before broadband connections become faster, the server and the end-

user’s computer should be located inside the same building e.g. hospital or university.

This system has been developed to handle the training of radiologist and

gastroenterologist with a large number of datasets. In practical terms, the limited

number of dataset that can be examined is set by the capacity of the server’s hard disk.

Concerning the accessibility of this remote training system, two server programs

using a different port have been implemented. The experience has demonstrated that

the firewall of the server’s local network sometimes blocks the server program

running on a specific port while it allows the server program running on the standard

HTML port. For example, when the server has been installed in the lab of the vision

systems group, it was found that the firewall of the university blocks the ports other

than the standard HTML port (port 80). Fortunately, the IT department of the

university has accepted to open the specific port (port 8080) that is used by the second

server program. Therefore, both servers are available to our end-users.

Besides, some firewalls of the client’s network i.e. the firewall of the Mater hospital

in Dublin, blocks the Applets which transfer data through the port 80 while computers

inside the Mater hospital can download datasets via the server running on the specific

port (port 8080).

Our study has demonstrated that a client-server architecture using a combination of

Servlets, JSPs and Applets is a good solution to develop a remote access system for

CTC training. This combination provides efficient data transfer performance. On the

client side, an Applet provides a user friendly interface and can be loaded on every

Java enabled browser. This approach offers great accessibility and avoids the need for

any custom software installation on the client side.

96

Chapter 6. Conclusion

6.1 Initial implementation

This thesis describes two different implementations of the CTC training system. The

initial implementation exclusively uses server side programs and allows a trainee

radiologist to flag colorectal cancer polyps and run an automatic evaluation based on

gold standard information. This approach provides the tools that are required to

facilitate the identification of polyps. These features include windowing and zooming.

Navigation through the 2-D axial images of a dataset can be performed by using

forward/backward buttons, clicking on a navigation bar or choosing a slice number

via a drop down menu. Although this research has yielded an operational system that

meets the main requirements of our medical collaborators, speed and usability are

major issues that are associated with this implementation.

6.1.1. Speed problem

CT images that are requested by the user are sent as he/she studies a CT dataset. Each

axial image has to be extracted from the CT dataset and then converted into JPEG

image before being sent to the client. This process takes a considerable time and the

interface has a very slow response time (>5s). The evaluation of the system with our

medical colleagues has revealed that slow response time renders this implementation

unusable. However, this initial research has proved invaluable in developing a better

approach. Discussion about the initial implementation with our medical colleagues

revealed that it is more convenient for our end-users to wait for a whole CT dataset to

be transferred from the server to the client instead of waiting for each image to be

transferred as the user requests it.

6.1.2. Usability problem

The interface to the initial implementation is made up of HTML pages that are

generated by server side programs (Java Servlets). The usability issue of this

implementation is due to the limitation of HTML. For instance, our medical

collaborators pointed out the need for mouse scrolling that is usually implemented on

modern analysis systems.

97

6.2 Revised implementation

In response to the observations of our medical collaborators, the revised

implementation consists of loading a whole CT dataset when the user starts the

training system. To reduce this transfer time, a compression technique has been

developed and is applied to CT datasets prior to transmission. As loss-less

compression is used, received 2-D axial images remain the same as the original.

Preserving the original density range and the original resolution ensures that the user

can get full advantage of features such as windowing, zooming and 3-D visualisation.

Thanks to the fast decompression process, the viewer Applet gives users registered as

specialists, the ability to start working on the initial images while the rest of the

dataset is being transferred.

Two server programs using different approaches have been implemented. The training

system lets the user choose the server program he/she wants to use before starting the

Applet. If the firewall of the client blocks the access to the first server, the user is free

to try the second server program. At present, radiologists from the Mater hospital are

able to remotely use the training system from the Mater hospital in Dublin.

6.2.1. Better response time

The second implementation of the CTC training system was developed using a

combination of server side and client side programs. When the CT dataset has been

sent to the client side, the interface of the training system exclusively uses the central

processing unit (CPU) of the client’s computer. This means that the response time

only depends on the speed of the user’s computer. With a standard, modern computer

for instance a PC with a Pentium 4, 2.8GHz and 512MB of RAM), the interface offers

a real time navigation using axial CT images. With this approach, the server is limited

to provide CT datasets and other files to the clients. Every operation on the CT dataset

is performed by the client’s computer. Therefore, the server saves some resources and

can handle more clients.

6.2.2. Advanced features

In response to the issue of usability, a Java Applet has been chosen as the client

program. An Applet can be loaded on a standard browser, provides an advanced user

interface and is able to exchange data with server side programs. For instance, the

mouse scrolling that was requested by our medical collaborators can be easily

98

implemented, to navigate through slices of a dataset. In addition, sliders and floating

simulated scout x-ray images have been developed to easily jump to a desired slice

and automatically focus on one of the previously flagged polyps. These new features

make the interface more user-friendly compared to the initial implementation. As a

result, we have developed a dedicated system to analyse 2-D axial images in

conjunction with modern analysis tools.

3-D visualisation is also supported and is intended to be used for “problem solving”.

A volume rendering technique called “ray-casting” has been implemented in the

system. One of the benefits of using ray-casting is the high processing speed which

ensures real-time volume rendering. Also this algorithm can be easily implemented in

the Applet code. Therefore, ray-casting is fully compatible with the basic Java Virtual

Machine (JVM) and ensures compatibilities with the end-user’s system.

For users registered as a specialist, the system can also be used as a tool to analyse

and annotate CTC datasets. Specialists can mark CT datasets using the visualisation

features provided by the Applet interface.

6.2.3. Evaluation strategy

Upon completion of their work, the trainee can run an automatic evaluation. This

evaluation is based on gold standard information previously gathered from

colonoscopy records. The evaluation panel displays the true-positive, false-negative

and false-positive polyps using a colour code. Specialists can use the interface of the

system to flag potential false-positive polyps in addition to the true-positive polyps.

For example, the ileocecal valve can be misinterpreted by trainees as colorectal cancer

(Summers et al. 2004). Therefore if a trainee flags it as a polyp, the evaluation panel

will be able to inform him/her that it is in fact the ileocecal valve.

The multi-user interface of the system allows monitoring of training and is secured by

the use of login and password. Following the automatic evaluation, the trainee can

choose to study a dataset again but his/her results will not be overwritten. Therefore,

the monitoring of the training will be reliable. Finally, the use of our system will

certainly help to determine the learning curve associated with interpreting CTC

studies.

99

6.3 Future work

This research is ongoing due to the changing needs of our medical collaborators and

the constant evolution of the CTC technique. The main weakness of this system is the

transfer time of CT datasets from the server to the client. Hopefully, CT dataset

compression can be improved in order to reduce this transfer time. Also, the

performance of the user’s computer and the connection speed between the server and

the client could be determined. The server could optimise the dataset transfer by

selecting the most appropriate compression ratio.

The security of the multi-user system can be improved. For example, an SSL

connection could be used to encrypt the user’s password into a database in the server.

Concerning the trainee’s result, a more comprehensive interface could display the

progression of the training. This feature could certainly increase the user-friendly

aspect of this system and maybe encourage the end-users by providing improved

feedback regarding their training.

Recent developments in CTC research that will need to be dealt with by any training

programme include fecal tagging for improved segmentation and polyp visibility

(Lefere et al. 2002, Pickhardt et al. 2003). Finally, computer aided detection (CAD)

(Summers et al. 2004, Yoshida et al. 2005) is a tool more and more used by specialists

to pre-examine CT datasets and find potential true-positive cancer polyps. This

feature could be also included in this training system as an assistive tool.

In order to meet the needs of our ultimate end-users (trainee radiologists in the area of

CTC) we have been in regular consultation with our medical collaborators from the

Gastrointestinal Unit and Department of Radiology at the Mater Misericordiae

Hospital in Dublin.

Upon completion of their study, results from our end-users are saved in a text file on

the server machine. Those results include the number of true-positive, false-negative

and false-positive as well as the reading time for each dataset studied. Therefore, after

the study of 50 to 100 cases by a group of trainee radiologists, it would be possible to

determine the learning curve associated with the relevant CTC tutor. It would be

particularly interesting to calculate the average evolution of the number of true-

100

positive, false-negative and false-positive polyps in order to determine the evolution

of the sensitivity and the specificity. Sensitivity can be calculated using the following

equation:

negatives-false ofnumber positives- trueofnumber
positives- trueofnumber

+
=ysensitivit (6.3.1)

Specificity can be calculated using the following equation:

positives-false ofnumber negatives- trueofnumber
negatives- trueofnumber

+
=yspecificit (6.3.2)

101

References

(Aufort et al. 2005) Aufort S, Charra L, Lesnik A, Bruel JM, Taourel P (2005)

“Multidetector CT of bowel obstruction: value of post-processing.”

EUROPEAN RADIOLOGY 15 (11): 2323-2329 NOV 2005

(Bohne-Lang et al. 2005) Bohne-Lang A, Groch WD, Ranzinger (2005) “AISMIG -

an interactive server-side molecule image generator” Nucleic Acids

Research, 2005, 33 (Web Server issue), 705-709

(Campo et al. 2004) Campo J, Comber H, Gavin A T. (2004) “All-Ireland Cancer

Statistics 1998-2000” Northern Ireland Cancer Registry/ National Cancer

Registry 2004.

(Cotton et al. 2004) P.B. Cotton, V.L. Durkalski, B.C. Pineau et al. (2004)

“Computer tomographic colonography (virtual colonoscopy): A

multicenter comparison with standard colonoscopy for detection of

colorectal neoplasia” The Journal of the American Medical Association

291(14)1713-1719.

(Dachman et al. 2003) Dachman AH, Yoshida H (2003) “Virtual colonoscopy: past,

present, and future” Radiologic clinics of north america 41 (2): 377-+

MAR 2003

(Fenlon et al. 1999) H. Fenlon, D.P. Nunes, P.C. Schroy et al. (1999) “A

comparison of virtual and conventional colonoscopy for the detection of

colorectal polyps” New England Journal of Medicine 341(20):1496-1503.

(Fidler et al. 2004) J.L. Fidler, J.G. Fletcher, C.D. Johnson et al. (2004)

“Understanding interpretive errors in radiologists learning computed

tomography colonography” Academic Radiology 11(7):750-756.

102

(Fisichella et al. 2006) Fisichella V, Hellstrom M (2006) “Availability, indications,

and technical performance of computed tomographic colonography: A

national survey” ACTA RADIOLOGICA 47 (3): 231-237 APR 2006

(Fletcher et al. 2000) Fletcher JG, Johnson CD, Welch TJ et al. (2000) “Optimization

of CT technique: prospective trial in 180 patients” Radiology 216:704-711

(Gluecker et al. 2002) Gluecker T, Meuwly JY, Pescatore P, Schnyder P, Delarive J,

Jornod P, Meuli R, Dorta G. (2002) “Effect of investigator experience in

CT colonography” Eur Radiol. 2002 Jun;12(6):1405-9. Epub 2002 Feb 9.

(Hill et al. 1978) Hill MJ , Morson BC , Bussey HJR (1978). “Etiology of the

adenoma-carcinoma sequence”. Lancet i : 245 - 247 .

(Huffman 1952) D. Huffman, “A method for the construction of minimum

redundancy codes,” Proceedings of the IRE, vol. 40, no. 9, pp. 1098–

1101, Sep.1952.

(Klein 2003) Mark Klein, M.D. (2003) “Technology makes inroads into imaging

practice” Diagnostic Imaging October 2003.

(Konishi et al. 1982) F Konishi and B C Morson (1982) “Pathology of colorectal

adenomas: a colonoscopic survey.” J Clin Pathol. 1982 August; 35(8):

830–841.

(Lefere et al. 2002) P.A. Lefere and S.S. Stefaan, S. Gryspeerdt (2002) “Dietary

fecal tagging as a cleansing method before CT colonography: Initial

results polyp detection and patient acceptance” Radiology 224(2):393-

403.

(Levoy 1988) M. Levoy. (1988) “Display of surfaces from volume data. IEEE

Computer“ Graphics & Applications, 8(5):29–37, May 1988.

103

(Macari et al. 1999) Macari M, Berman P, Dicker M, et al. (1999) “Usefulness of CT

colonography in patients with incomplete colonoscopy” AJR

1999;173:561-564.

(Masseroli et al. 2004) Masseroli, M.; Bonacina, S.; Pinciroli, F. (2004) “Java-Based

Browsing, Visualization and Processing of Heterogeneous Medical Data

from Remote Repositories. Engineering in Medicine and Biology Society,

2004.” IEMBS apos;04. 26th Annual International Conference of the

IEEE Volume 2, Issue , 1-5 Sept. 2004 Page(s): 3326 – 3329

(Mildenberger et al. 2002) P. Mildenberger, M. Eichelberg, E. Martin (2002)

“Introduction to the DICOM standard”. European Radiology 12(4)920-

927.

(Morson et al. 1983) Morson BC , Bussey HJR , Day DW , Hill MJ (1983).

“Adenomas of the large bowel”. Cancer Surveys 2 : 451 - 478 .

(NEMA 2003) National Electrical Manufacturers Association. (2003) Digital Imaging

and Communications in Medicine (DICOM). Rosslyn, Va: National

Electrical Manufacturers Association; PS 3.1-2003–3.16-2003.

(O’Halloran 2005) John O’Halloran (2005) “Compression of Medical (CT) Images”

Thesis presented as component of Master in Electronic Systems. School

of Electronic Engineering, Dublin City University, Vision Systems Group.

(Paulson 2005) Paulson, L.D. (2005) “Building rich web applications with Ajax”

Computer Volume 38, Issue 10, Oct. 2005 Page(s): 14 – 17 Digital Object

Identifier 10.1109/MC.2005.330

(Pennebaker et al. 1993) JPEG: Still Image Data Compression Standard, Van

Nostrand Reinhold, New York 1993.

104

(Pickhardt et al. 2003) P.J. Pickhardt, J.R. Choi, I. Hwang et al. (2003) “Computed

tomographic virtual colonoscopy to screen for colorectal neoplasia in

asymptomatic adults” New England Journal of Medicine 349(23):2191-

2200.

(Pickhardt and Choi 2003) P.J. Pickhardt and J.H. Choi (2003) “Electronic

cleansing and stool tagging in CT colonography: advantages and pitfalls

with primary three-dimensional analysis” American Journal of

Roentgenology 181(3):799-805.

(Rex et al. 1997) Rex DK, Cutler CS, Lemmel GT, et al. (1997) “Colonoscopic miss

rate of adenomas determined by back-to-back colonoscopies.”

Gastroenterology;112:24-28.

(Sadleir et al. 2002) R.J.T. Sadleir, P.F. Whelan, N. Sezille, J.F. Bruzzi, H.M.

Fenlon, A.C. Moss, P. MacMathuna (2002) "Automated detection and

flagging of potential colorectal neoplasia at CT colonography" 3rd

International Workshop on Multislice CT, 3D Imaging and Virtual

Endoscopy, Rome, Italy, June 6th - 8th.

(Sadleir et al. 2004 a) R.J.T. Sadleir and P.F. Whelan (2004) "Fast colon centreline

calculation using optimised 3D topological thinning" Computerized

Medical Imaging and Graphics (to appear)

(Sadleir et al. 2004 b) R.J.T. Sadleir, P.F. Whelan, P. MacMathuna et al. (2004) “A

Portable Toolkit for Providing Straightforward Access to Medical Image

Data” Radiographics 24(4) 1193-1202.

(Soto et al. 2004) J.A. Soto and M. Barish and J. Ferrucci "CT Colonography

Interpretation: Guidelines for Training Courses" Presented at: RSNA

annual meeting; November 28-December 3, 2004: Chicago.

105

(Soto et al. 2005) Jorge A. Soto, MD, Matthew A. Barish, MD and Judy Yee, MD

(2005) “Reader Training in CT Colonography: How Much Is Enough?”

Radiology 2005;237:26-27.

(Slomka et al. 2000) Slomka PJ, Elliott E, Driedger AA. (2000) “Java-based remote

viewing and processing of nuclear medicine images: toward the imaging

department without walls". J Nucl Med. 2000 Jan;41(1):111-8. PMID:

10647613 [PubMed - indexed for MEDLINE]

(Summers et al. 2004) R.M. Summers, J. Yao and C.D. Johnson (2004) “CT

colonography with computer-aided detection: automated recognition of

ileocecal valve to reduce number of false-positive detections” 233(1):266-

272.

(Sunit et al. 2006) Sunit Sebastian, MD (2006) Study presented in May 2006 at the

American Roentgen Ray Society Annual Meeting in Vancouver, BC.

(Taylor et al. 2004) S.A. Taylor, S. Halligan, D. Burling et al. (2004) “CT

colonography: effect of experience and training on reader performance”

European Radiology 14(6):1025-1033.

(Villavicencio et al. 2000) Villavicencio RT, Rex DK. (2000) “Colonic adenomas:

prevalence and incidence rates, growth rates, and miss rates at

colonoscopy”. Semin Gastrointest Dis 2000;11:185-193.

(Vining 1994) D.J. Vining, D.W. Gelfand, R.E. Bechtold et al. (1994) “Technical

Feasibility of Colon Imaging with Helical CT and Virtual Reality”

American Journal of Roentgenology 162(Suppl):104.

(Young et al. 2004) Young N, Chang Z, Wishart DS (2004) “GelScape: a web-based

server for interactively annotating, manipulating, comparing and archiving

1D and 2D gel images” Bioinformatics 20 : 976 2004.

106

 (Yoshida et al. 2005) H. Yoshida and A.H. Dachman (2005) “CAD techniques,

challenges, and controversies in computed tomographic colonography”

Abdominal Imaging 30(1):26-41.

(Zafar et al. 1991) Zafar S, Zhang Yq, Baras Js (1991) “Predictive block-matching

motion estimation for tv coding .1. interblock prediction” IEEE

transactions on broadcasting 37 (3): 97-101 SEP 1991

(Zhanlin 2005) Ji Zhanlin (2005) “A HTTP Compatible Medical Image Server”

Thesis presented as component of Master in Electronic Systems. School

of Electronic Engineering, Dublin City University, Vision Systems Group.

107

Publications Arising from this Research

This work has been presented at the following conferences:

V. Luauté, R.J.T. Sadleir and P.F. Whelan (2006) "A Remote Access Training

System for the Detection of Colorectal Polyps at Computed Tomography

Colonography" ECR 2006 - European Congress of Radiology, Vienna, Austria,

March 3rd - 7th.

V. Luauté, R.J.T. Sadleir and P.F. Whelan (2006) "An automatic evaluation

strategy for a remote access CT colonography training system" Biosignal 2006 - The

18th International EURASIP (European Association for Signal, Speech and Image

Processing) Conference, Brno, Czech Republic, June 28th to 30th

Conference technically co-sponsored by IEEE EMBS

V. Luauté, R.J.T. Sadleir, H.M. Fenlon and P.F. Whelan (2006) "A Reader Training

System for CT Colonography" IMVIP 2006 - Irish Machine Vision and Image

Processing, Dublin, Ireland, August 30th to September 1st.

Vincent Luauté, Robert J.T. Sadleir, Paul F. Whelan (2006) "A remote access web

based tutor system for reader training at CT colonography" RSNA 2006 -

Radiological Society of North America, Annual meeting, Chicago, USA, November

26 – December 1.

