Byrne, Robert, Coleman, Simon, Gallagher, Simon and Diamond, Dermot ORCID: 0000-0003-2944-4839 (2010) Designer molecular probes for phosphonium ionic liquids. Physical Chemistry Chemical Physics, 12 (8). pp. 1895-1904. ISSN 1463-9076
Abstract
Investigations into the extent of structuring present in phosphonium based ionic liquids (ILs) have been carried out using photochromic molecular probes. Three spiropyran derivatives containing hydroxyl (BSP-1), carboxylic acid (BSP-2) and aliphatic chain (C14H29) (BSP-3) functional groups have been analysed in a range of phosphonium based ionic liquids and their subsequent physico-chemical interactions were reported. It is believed that the functional groups locate the probe molecules into specific regions based upon the interaction of the functional groups with particular and defined regions of the ionic liquid. This structuring results in thermodynamic, kinetic and solvatochromic parameters that are not predictable from classical solvent models. BSP-1 and BSP-2 exhibit generally negative entropies of activation ranging from -50 J K-1 mol-1 to -90 J K-1 mol-1 implying relatively low solvent–solute interactions and possible anion interactions with IL polar functional groups. Higher than expected activation energies of 60 kJ mol-1 to 100 kJ mol-1 obtained for polar probes maybe be due to IL functional groups competing with the charged sites of the merocyanine (MC) isomer thus reducing MC stabilisation effects. Differences in thermal relaxation rate constants (2.5 × 10-3 s-1 in BSP-1 and 3 × 10-4 s-1 in BSP-2 in [P6,6,6,14][dbsa]) imply that while the polar probe systems are primarily located in polar/charged regions, each probe experiences slightly differing polar domains. BSP-3 entropies of activation are positive and between 30 J K-1 mol-1 to 66 J K-1 mol-1. The association of the non-polar functional group is believed to locate the spiropyran moiety in the interfacial polar and non-polar regions. The thermal relaxation of the MC form causes solvent reorientation to accommodate the molecule as it reverts to its closed form. Slow thermal relaxation rate constants were obserevd in contrast to high activation energies (5 × 10-4 s-1 and 111.91 kJ mol-1 respectively, for BSP-3 in [P6,6,6,14][dbsa]). This may be due to steric effects arising from proposed nano-cavity formation by the alkyl chains in phosphonium based ILs.
Metadata
Item Type: | Article (Published) |
---|---|
Refereed: | Yes |
Subjects: | Physical Sciences > Chemistry |
DCU Faculties and Centres: | Research Institutes and Centres > Biomedical Diagnostics Institute (BDI) Research Institutes and Centres > National Centre for Sensor Research (NCSR) Research Institutes and Centres > CLARITY: The Centre for Sensor Web Technologies |
Publisher: | Royal Society of Chemistry |
Official URL: | http://dx.doi.org/10.1039/b920580b |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
Funders: | Science Foundation Ireland |
ID Code: | 15401 |
Deposited On: | 09 Jun 2010 14:54 by Robert Byrne . Last Modified 18 Sep 2018 12:29 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record