Shamaie, Atid (2003) Hand tracking and bimanual movement understanding. PhD thesis, Dublin City University.
Abstract
Bimanual movements are a subset ot human movements in which the two hands move together in order to do a task or imply a meaning A bimanual movement appearing in a sequence of images must be understood in order to enable computers to interact with humans in a natural way This problem includes two main phases, hand tracking and movement recognition.
We approach the problem of hand tracking from a neuroscience point ot view First the hands are extracted and labelled by colour detection and blob analysis algorithms In the presence of the two hands one hand may occlude the other occasionally Therefore, hand occlusions must be detected in an image sequence A dynamic model is proposed to model the movement of each hand separately Using this model in a Kalman filtering proccss the exact starting and end points of hand occlusions are detected We exploit neuroscience phenomena to understand the beha\ tour of the hands during occlusion periods Based on this, we propose a general hand tracking algorithm to track and reacquire the hands over a movement including hand occlusion The advantages of the algorithm and its generality are demonstrated in the experiments.
In order to recognise the movements first we recognise the movement of a hand Using statistical pattern recognition methods (such as Principal Component Analysis and Nearest Neighbour) the static shape of each hand appearing in an image is recognised A Graph- Matching algorithm and Discrete Midden Markov Models (DHMM) as two spatio-temporal pattern recognition techniques are imestigated tor recognising a dynamic hand gesture
For recognising bimanual movements we consider two general forms ot these movements, single and concatenated periodic We introduce three Bayesian networks for recognising die movements The networks are designed to recognise and combinc the gestures of the hands in order to understand the whole movement Experiments on different types ot movement demonstrate the advantages and disadvantages of each network.
Metadata
Item Type: | Thesis (PhD) |
---|---|
Date of Award: | 2003 |
Refereed: | No |
Supervisor(s): | Sutherland, Alistair |
Uncontrolled Keywords: | Pattern recognition systems; Gesture recognition; Computer vision |
Subjects: | Computer Science > Algorithms |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
ID Code: | 18221 |
Deposited On: | 24 May 2013 13:37 by Celine Campbell . Last Modified 24 May 2013 13:37 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
6MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record