Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

Cell density monitoring and control of microencapsulated CHO cell cultures

Cole, Harriet Emma (2015) Cell density monitoring and control of microencapsulated CHO cell cultures. PhD thesis, Dublin City University.

Abstract
Though mammalian cells play a key role in the manufacturing of recombinant glycosylated proteins, cell cultures and productivity are limited by the lack of suitable systems to enable stable perfusion culture. Microencapsulation, or entrapping cells within a semi-permeable membrane, offers the potential to generate high cell density cultures and improve the productivity by mimicking the cells natural environment. However, the cells being secluded by the microcapsules membrane are difficult to access for monitoring purposes. In this study, CHO-DP12 cells were cultured within calcium-alginate-poly-Llysine-alginate microcapsules in two bench scale- bioreactors, including a highly sensitive bench-scale calorimeter. The different cultures were monitored by continuous real-time dielectric spectroscopy and/or heat-flow measurements. These measurements were acquired, saved and plotted as time charts for rapid culture evaluation within a LabVIEW Virtual Instrument specifically designed for this study. Findings of this study show that capacitance measurements gave real time information on the viable cell density evolution in batch, fed batch and high density perfusion cultures; and the heat flux measurements allowed to follow the cell evolution in high density perfusion cultures. More significantly, dielectric spectroscopy gave precise information throughout each stage of the culture, from inoculation to the maximum cell density reached and through the early stages of the decline phase. Based on these results, a control strategy was implemented within the tailored LabVIEW program to control the feed rate of fed-batch cultures. The feed rate was calculated directly in the Virtual Instrument in accordance with the viable cell density and growth rate measured by dielectric spectroscopy. The capability of monitoring the evolution of microencapsulated cultures brings microencapsulation technology a step towards a potential industrial application.
Metadata
Item Type:Thesis (PhD)
Date of Award:November 2015
Refereed:No
Supervisor(s):Marison, Ian
Subjects:Biological Sciences > Biotechnology
Humanities > Biological Sciences > Biotechnology
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Biotechnology
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
ID Code:20711
Deposited On:13 Nov 2015 12:50 by Ian Marison . Last Modified 19 Jul 2018 15:06
Documents

Full text available as:

[thumbnail of Harriet-Cole-PhD-Thesis.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB
Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record