Skip to main content
DORAS
DCU Online Research Access Service
Login (DCU Staff Only)
Dependency graph-to-string translation

Li, Liangyou ORCID: 0000-0002-0279-003X, Way, Andy ORCID: 0000-0001-5736-5930 and Liu, Qun ORCID: 0000-0002-7000-1792 (2015) Dependency graph-to-string translation. In: 2015 Conference on Empirical Methods in Natural Language Processing (EMNLP), 17-21 Sept 2015, Lisbon, Portugal.

Full text available as:

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
265kB

Abstract

Compared to tree grammars, graph grammars have stronger generative capacity over structures. Based on an edge replacement grammar, in this paper we propose to use a synchronous graph-to-string grammar for statistical machine translation. The graph we use is directly converted from a dependency tree by labelling edges. We build our translation model in the log-linear framework with standard features. Large-scale experiments on Chinese–English and German–English tasks show that our model is significantly better than the state-of-the-art hierarchical phrase-based (HPB) model and a recently improved dependency tree-to-string model on BLEU, METEOR and TER scores. Experiments also suggest that our model has better capability to perform long-distance reordering and is more suitable for translating long sentences.

Item Type:Conference or Workshop Item (Paper)
Event Type:Conference
Refereed:Yes
Subjects:Computer Science > Machine translating
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing
Research Initiatives and Centres > ADAPT
Published in: Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing. . Association for Computational Linguistics.
Publisher:Association for Computational Linguistics
Official URL:http://dx.doi.org/10.18653/v1/D15-1004
Copyright Information:© 2015 Association for Computational Linguistics.
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License
Funders:People Programme (Marie Curie Actions) of the European Union’s Framework Programme (FP7/2007- 2013) under REA grant agreement no 317471, ADAPT Centre for Digital Content Technology is funded under the SFI Research Centres Programme (Grant 13/RC/2106) and is co-funded under the European Regional Development Fund.
ID Code:23335
Deposited On:21 May 2019 15:44 by Thomas Murtagh . Last Modified 22 Jul 2019 14:04

Downloads

Downloads per month over past year

Archive Staff Only: edit this record

Altmetric
- Altmetric
+ Altmetric
  • Student Email
  • Staff Email
  • Student Apps
  • Staff Apps
  • Loop
  • Disclaimer
  • Privacy
  • Contact Us