Optical character recognition (OCR) for historical documents is a complex procedure subject to a unique set of material issues, including inconsistencies in typefaces and low quality scanning. Consequently, even the most sophisticated OCR engines produce errors. This paper reports on a tool built for postediting the output of Tesseract, more specifically for correcting common errors in digitized historical documents. The proposed tool suggests alternatives for word forms not found in a specified vocabulary. The assumed error is replaced by a presumably correct alternative in the post-edition based on the scores of a Language Model (LM). The tool is tested on a chapter of the book An Essay Towards Regulating the Trade and Employing the Poor of this Kingdom. As demonstrated below, the tool is successful in correcting a number of common errors. If sometimes unreliable, it is also transparent and subject to human intervention.
Item Type:
Conference or Workshop Item (Paper)
Event Type:
Workshop
Refereed:
Yes
Additional Information:
Colocated with LREC 2020 Workshop
Language Resources and Evaluation Conference
Due to the COVID-19 pandemic, the workshop will not take place. However, the proceedings are published online.