Ramos de Assis Neto, Silvano, Leoni Santos, Guto, da Silva Rocha, Elisson ORCID: 0000-0002-7742-2995, Bendechache, Malika ORCID: 0000-0003-0069-1860, Rosati, Pierangelo ORCID: 0000-0002-6070-0426, Lynn, Theo ORCID: 0000-0001-9284-7580 and Takako Endo, Patricia ORCID: 0000-0002-9163-5583 (2020) Detecting human Activities Based on a multimodal sensor data set using a bidirectional long short-term memory model: a case study. In: Ponce, Hiram ORCID: 0000-0002-6559-7501, Martínez-Villaseñor, Lourdes ORCID: 0000-0002-9038-7821, Brieva, Jorge ORCID: 0000-0002-5430-8778 and Moya-Albor, Ernesto ORCID: 0000-0002-9637-786X, (eds.) Challenges and Trends in Multimodal Fall Detection for Healthcare. Studies in Systems, Decision and Control (SSDC), 273 . Springer, pp. 31-51. ISBN 978-3-030-38747-1
Item Type: | Book Section |
---|---|
Refereed: | Yes |
Uncontrolled Keywords: | Bi-LSTM; Human falls; Multimodal sensors; Human activities |
Subjects: | Computer Science > Artificial intelligence Computer Science > Machine learning |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing |
Publisher: | Springer |
Official URL: | http://dx.doi.org/10.1007/978-3-030-38748-8_2 |
Copyright Information: | © 2020 Springer |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
ID Code: | 24471 |
Deposited On: | 22 May 2020 14:19 by Malika Bendechache . Last Modified 29 Jan 2021 04:30 |
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB |
Downloads
Downloads per month over past year
Archive Staff Only: edit this record