Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

Terminology Translation in Low-Resource Scenarios

Haque, Rejwanul orcid logoORCID: 0000-0003-1680-0099, Hasanuzzaman, Mohammed orcid logoORCID: 0000-0003-1838-0091 and Way, Andy orcid logoORCID: 0000-0001-5736-5930 (2019) Terminology Translation in Low-Resource Scenarios. Information, 10 (9). ISSN 2078-2489

Abstract
Term translation quality in machine translation (MT), which is usually measured by domain experts, is a time-consuming and expensive task. In fact, this is unimaginable in an industrial setting where customised MT systems often need to be updated for many reasons (e.g., availability of new training data, leading MT techniques). To the best of our knowledge, as of yet, there is no publicly-available solution to evaluate terminology translation in MT automatically. Hence, there is a genuine need to have a faster and less-expensive solution to this problem, which could help end-users to identify term translation problems in MT instantly. This study presents a faster and less expensive strategy for evaluating terminology translation in MT. High correlations of our evaluation results with human judgements demonstrate the effectiveness of the proposed solution. The paper also introduces a classification framework, TermCat, that can automatically classify term translation-related errors and expose specific problems in relation to terminology translation in MT. We carried out our experiments with a low resource language pair, English-Hindi, and found that our classifier, whose accuracy varies across the translation directions, error classes, the morphological nature of the languages, and MT models, generally performs competently in the terminology translation classification task.
Metadata
Item Type:Article (Published)
Refereed:Yes
Subjects:Computer Science > Machine translating
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing
Research Institutes and Centres > ADAPT
Publisher:MDPI
Official URL:http://dx.doi.org/10.3390/info10090273
Copyright Information:© 2019 The Authors. Open Access
ID Code:24604
Deposited On:15 Jun 2020 14:27 by Vidatum Academic . Last Modified 04 Jan 2021 17:05
Documents

Full text available as:

[thumbnail of information-10-00273.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
672kB
Metrics

Altmetric Badge

Dimensions Badge

Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record