Ducrée, Jens ORCID: 0000-0002-0366-1897 (2019) Efficient development of integrated lab-on-a-chip systems featuring operational robustness and manufacturability. Micromachines, 10 (12). ISSN 2072-666X
Abstract
The majority of commercially oriented microfluidic technologies provide novel point-of-use solutions for laboratory automation with important areas in the context of the life sciences such as health care, biopharma, veterinary medicine and agrifood as well as for monitoring of the environment, infrastructures and industrial processes. Such systems are often composed of a modular setup exhibiting an instrument accommodating rather conventional actuation, detection and control units which interfaces with a fluidically integrated “Lab-on-a-Chip” device handling (bio-)sample(s) and reagents. As the complex network of tiny channels, chambers and surface-functionalised zones can typically not be properly cleaned and regenerated, these microfluidic chips are mostly devised as single-use disposables. The availability of cost-efficient materials and associated structuring, functionalisation and assembly schemes thus represents a key ingredient along the commercialisation pipeline and will be a first focus of this work. Furthermore, and owing to their innate variability, investigations on biosamples mostly require the acquisition of statistically relevant datasets. Consequently, intermediate numbers of consistently performing chips are already needed during application development; to mitigate the potential pitfalls of technology migration and to facilitate regulatory compliance of the end products, manufacture of such pilot series should widely follow larger-scale production schemes. To expedite and de-risk the development of commercially relevant microfluidic systems towards high Technology Readiness Levels (TRLs), we illustrate a streamlined, manufacturing-centric platform approach employing the paradigms of tolerance-forgiving Design-for-Manufacture (DfM) and Readiness for Scale-up (RfS) from prototyping to intermediate pilot series and eventual mass fabrication. Learning from mature industries, we further propose pursuing a platform approach incorporating aspects of standardisation in terms of specification, design rules and testing methods for materials, components, interfaces, and operational procedures; this coherent strategy will foster the emergence of dedicated commercial supply chains and also improve the economic viability of Lab-on-a-Chip systems often targeting smaller niche markets by synergistically bundling technology development
Metadata
Item Type: | Article (Published) |
---|---|
Refereed: | Yes |
Uncontrolled Keywords: | Lab-on-a-Chip; microfluidic platform; functional integration; technology readiness level; standardisation; Design-for-Manufacture; scale-up of manufacture; tolerance-forgiving design |
Subjects: | UNSPECIFIED |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Science and Health > School of Physical Sciences |
Publisher: | MDPI |
Official URL: | https://dx.doi.org/10.3390/mi10120886 |
Copyright Information: | © The Authors 2019. Open Access (CC-BY 4.0) |
ID Code: | 27461 |
Deposited On: | 29 Jul 2022 16:50 by Thomas Murtagh . Last Modified 29 Jul 2022 16:50 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
1MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record