Browse DORAS
Browse Theses
Search
Latest Additions
Creative Commons License
Except where otherwise noted, content on this site is licensed for use under a:

How fundamental materials science will generate revolutionary breakthroughs in environmental monitoring technologies

Diamond, Dermot (2014) How fundamental materials science will generate revolutionary breakthroughs in environmental monitoring technologies. In: Sensor100 ‘Sensors in the Environment 2014’, 15-16 Oct 2014, Imperial College, London, UK.

Full text available as:

[img]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
8Mb

Abstract

Cloud-based computing infrastructure with enormous storage capability, coupled with new tools for remotely accessing, analysing and visualising data, is developing at an exponential rate in terms of the variety and scale of available information. The ‘sensor web’ is an area of particular interest, with many major industries increasingly looking at ways to apply sensor network technologies to develop new products and services. However, the practical realisation of sensor networks requires a scalable model, in which the basic building block, the sensor (or sensing platform) is very low cost to buy, requires little or no maintenance, and has a very long lifetime (Years). Understandably, attention has therefore focused on sensors that meet these requirements, like thermistors, photodiodes, and vibration sensors. However, despite the obvious tremendous value of integrating chemical sensing capabilities for distributed real-time environmental sensing, there are no existing examples of large-scale deployments. There are a number of reasons why this is so. Perhaps most importantly, biofouling and other issues cause changes in sensor response characteristics, which in turn requires regular calibration. Conventional approaches to liquid handling in these platforms drives up the price and complexity, and requires larger form factors for reagent and waste storage. The integration of new concepts for liquid control using fully integrated photo-actuated polymer valves offers a way forward, if issues related to reliability and response characteristics can be solved. These circulation systems are more biomimetic in nature than traditional microfluidic platforms based on silicon micromachining. In this paper, I will review the current status of environmental sensor networks, and present recent results based on photo-switchable gels and microvehicles that suggest we are moving closer to the realisation of efficient yet sophisticated microfluidic platforms that could provide the basis for future low-cost autonomous chemo/bio-sensing technologies.

Item Type:Conference or Workshop Item (Invited Talk)
Event Type:Conference
Refereed:No
Subjects:Physical Sciences > Analytical chemistry
Physical Sciences > Photochemistry
Biological Sciences > Microfluidics
Physical Sciences > Electrochemistry
Physical Sciences > Environmental chemistry
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Chemical Sciences
Research Initiatives and Centres > INSIGHT Centre for Data Analytics
Research Initiatives and Centres > National Centre for Sensor Research (NCSR)
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License
Funders:Science Foundation Ireland
ID Code:20259
Deposited On:22 Oct 2014 10:24 by Dermot Diamond. Last Modified 22 Oct 2014 10:24

Download statistics

Archive Staff Only: edit this record