Browse DORAS
Browse Theses
Latest Additions
Creative Commons License
Except where otherwise noted, content on this site is licensed for use under a:

Chemotactic and electrotactic self-propelled ionic liquid droplets

Francis, Wayne and Wagner, Klaudia and Beirne, Stephen and Officer, David and Wallace, Gordon and Florea, Larisa and Diamond, Dermot (2015) Chemotactic and electrotactic self-propelled ionic liquid droplets. In: 67th Irish Universities Chemistry Research Colloquium, 25-26 June 2015, Maynooth University, Ireland.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Herein we report the chemotactic and electrotactic self-propelled movement of droplets composed solely of an ionic liquid (IL), namely trihexyl(tetradecyl)phosphonium chloride ([P6,6,6,14][Cl]). These IL droplets move spontaneously across the liquid/air interface and are guided to specific destinations within fluidic systems along Cl- concentration gradients. The self-propelled movement of the droplet is due to the controlled release of the [P6,6,6,14]+, a very efficient cationic surfactant, which is a constituent of the IL droplet. The rate of [P6,6,6,14]+ release depends on the solubility of the closely associated Cl- anion in the surrounding media, as the formation of free [P6,6,6,14]+ in the aqueous phase depends on the local Cl- concentration at the IL-aqueous boundary. Therefore, in Cl- gradients there is an unsymmetrical release of surfactant into the solution, which in turn results in a surface tension gradient around the droplet. This leads to Marangoni like flows which propel the droplet from areas of low surface tension to high surface tension1. The required gradients for movement are generated both chemically, by introducing a Cl- source in the system (e.g. HCl, NaCl) and electro-chemically, through redistribution of ions after application of an electric field. Chemically generated gradients quickly come to equilibrium and therefore the droplet will cease to move unless more chemoattractant (source of Cl-) is added. In contrast, electro-chemically generated gradients have increased lifespan and allow for on demand, multi-directional, reversible droplet movement. This type of triggered surfactant release provides a compelling mechanism for controlling droplet movement within microfluidic devices, and could form the basis of providing sophisticated functions such as detection of and transport along chemoattractant gradients, and status-diagnosis and auto detection/repair of damage.

Item Type:Conference or Workshop Item (Speech)
Event Type:Conference
Subjects:Engineering > Materials
Physical Sciences > Electrochemistry
Physical Sciences > Organic chemistry
Physical Sciences > Chemistry
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Chemical Sciences
Research Initiatives and Centres > INSIGHT Centre for Data Analytics
Research Initiatives and Centres > National Centre for Sensor Research (NCSR)
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License
Funders:Science Foundation Ireland, European Union Marie Curie People Programme
ID Code:20715
Deposited On:21 Jul 2015 11:24 by Wayne Francis. Last Modified 03 Mar 2017 11:11

Download statistics

Archive Staff Only: edit this record