Browse DORAS
Browse Theses
Search
Latest Additions
Creative Commons License
Except where otherwise noted, content on this site is licensed for use under a:

From ‘Devices' to 'Self-Aware, Bioinspired MicroSystems': What does the future hold for optical oensing?

Florea, Larisa and Francis, Wayne and Ben Azouz, Aymen and Coleman, Simon and Diamond, Dermot (2016) From ‘Devices' to 'Self-Aware, Bioinspired MicroSystems': What does the future hold for optical oensing? In: EUROPTRODE XIII , 20-23 Mar 2016, University of Graz, Graz, Austria.

Full text available as:

[img]
Preview
PDF (Invited lecture) - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
9Mb

Abstract

Right now, there is real excitement across the broad area of materials science research, as the quality of the work improves and the potential for new levels of impact becomes more tangible. Furthermore, access to more powerful characterisation tools enables new materials to be more fully and rapidly profiled. Enhanced characterisation coupled with improved ability to control and manipulate material structure from the atomic/molecular level presents unparalleled opportunities for researchers. New modelling techniques can establish correlations between theory and practice, while innovative approaches to molecular self-assembly and 3D printing allows full control over the spatial arrangement of materials from the molecular to the macro scale. A clearer understanding of surface and interfacial behaviour will be essential to underpin fundamental breakthroughs that in turn produce truly disruptive technologies. Stimuli-responsive materials that exhibit changes in optical (colour, absorbance, fluorescence, reflectivity), electrical/electrochemical (resistance, redox behaviour), chemical (binding-release) or physical (dielectric constant, viscosity, rigidity, volume) characteristics are opening up new concepts in so-called 4D-materials science, in which the 4th dimension is the ability to change materials characteristics over time in a controlled manner using external stimuli. These tremendous advances in materials science will provide the foundations for entirely new concepts in sensing – concepts that draw inspiration from biological sources and models, enabling the creation of autonomous devices that are able to monitor and manage their own condition, as well as that of their surrounding environment. New capabilities such as programmed motility, switchable selective uptake and release of molecular agents, self-maintenance/repair, and remote reporting will be commonplace, and ultimately, the ability to self-assemble, replicate, and disassemble will enable these devices to manifest many of the features of biological entities. Assembling these capabilities into new platforms based on bioinspired concepts could open the way to devices with performance specifications well beyond the current state of the art. For example, smart implantable devices capable of sensing, reporting and responding to changes in an individual’s health status, and that can function reliably within the body for many years, could dramatically improve the quality of life for many millions of people suffering from chronic conditions. Achieving this goal is arguably one of the most important global challenges for modern science. In this lecture I will explore how some of these features, albeit still at a relatively primitive stage of development, are already beginning to move from concept to demonstration. In particular, I will focus on the important role of light as a means to enable and control stimuli-responsive materials, and discuss how these might provide initial building blocks for creating these futuristic devices and platforms.

Item Type:Conference or Workshop Item (Invited Talk)
Event Type:Conference
Refereed:No
Subjects:Physical Sciences > Analytical chemistry
Physical Sciences > Photochemistry
Biological Sciences > Microfluidics
Biological Sciences > Biosensors
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Chemical Sciences
Research Initiatives and Centres > INSIGHT Centre for Data Analytics
Research Initiatives and Centres > National Centre for Sensor Research (NCSR)
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License
Funders:Science Foundation Ireland, Enterprise Ireland, European Framework Programme 7
ID Code:21128
Deposited On:31 Mar 2016 11:22 by Dermot Diamond. Last Modified 26 Apr 2017 11:25

Download statistics

Archive Staff Only: edit this record