Browse DORAS
Browse Theses
Latest Additions
Creative Commons License
Except where otherwise noted, content on this site is licensed for use under a:

Design and evaluation of an energy efficient frequency adaptive router

Guo, Feng (2017) Design and evaluation of an energy efficient frequency adaptive router. PhD thesis, Dublin City University.

Full text available as:

PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader


Energy efficiency is becoming a prominent issue in ICT networks. Many approaches have been proposed to reduce the power consumption of ICT network devices. Among those green approaches, dynamic frequency scaling (DFS) offers an elegant solution for improving the energy efficiency of processors. To evaluate the impact of different DFS techniques on energy efficiency of real network devices, this work designs a prototype of a novel energy-aware Frequency Adaptive Router (FAR) that dynamically scales the operating frequency of core logic FPGA processor among five different processing capacities in response to traffic load, rather than leaving the network devices running on its maximum processing capacity all the time. Three dynamic frequency adaptation control policies are introduced into the FAR to balance the trade-off between performance and power consumption. Based on statistics monitoring and preset thresholds, the proposed dynamic frequency adaptation control policies can manage the FAR to always operate at the lowest processing capacity required to handle instantaneous traffic load without affecting the quality of service (QoS). The implementation of these frequency adaptation control policies involves assessing an associated traffic throughput threshold beyond which the router will begin to lose packets for each of the five operating frequencies, and then adaptively scaling the operating frequency in response to the instantaneous traffic load to save energy without compromising end-to-end QoS. The energy efficiency and performance of the FAR is evaluated at the five different operating frequencies with different number of active ports, traffic bit rates and packet sizes. The evaluation results show that when in idle state, the FAR can significantly save power of up to 52%. Experiments with synthetic traces indicate that 46% of power can be saved while maintaining required QoS. Similar results can be expected when these general power-saving principles are applied in future commercial routers.

Item Type:Thesis (PhD)
Date of Award:November 2017
Supervisor(s):Wang, Xiaojun
Uncontrolled Keywords:Energy efficient networking; frequency scaling; efficient routing
Subjects:Computer Science > Computer networks
Engineering > Telecommunication
Engineering > Electronic engineering
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License
Funders:China Scholarship Council and Dublin City University
ID Code:21891
Deposited On:10 Nov 2017 15:23 by Xiaojun Wang. Last Modified 17 Nov 2017 16:23

Download statistics

Archive Staff Only: edit this record