Coogan, Thomas (2007) Dynamic gesture recognition using transformation invariant hand shape recognition. Master of Science thesis, Dublin City University.
Abstract
In this thesis a detailed framework is presented for accurate real time gesture recognition. Our approach to develop a hand-shape classifier, trained using computer animation, along with its application in dynamic gesture recognition is described. The system developed operates in real time and provides accurate gesture recognition. It operates using a single low resolution camera and operates in Matlab on a conventional PC running Windows XP.
The hand shape classifier outlined in this thesis uses transformation invariant subspaces created using Principal Component Analysis (PCA). These subspaces are created from a large vocabulary created in a systematic maimer using computer animation. In recognising dynamic gestures we utilise both hand shape and hand position information; these are two o f the main features used by humans in distinguishing gestures. Hidden Markov Models (HMMs) are trained and employed to recognise this combination of hand shape and hand position features.
During the course o f this thesis we have described in detail the inspiration and motivation behind our research and its possible applications. In this work our emphasis is on achieving a high speed system that works in real time with high accuracy.
Metadata
Item Type: | Thesis (Master of Science) |
---|---|
Date of Award: | 2007 |
Refereed: | No |
Supervisor(s): | Sutherland, Alistair |
Uncontrolled Keywords: | sign language recognition; hand shape classifiers; |
Subjects: | Computer Science > Image processing |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
ID Code: | 17020 |
Deposited On: | 19 Jun 2012 10:51 by Fran Callaghan . Last Modified 19 Jul 2018 14:55 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
2MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record