Shvydkiv, Oksana (2013) Microphotochemistry - a new resources efficient synthesis tool approach. PhD thesis, Dublin City University.
Abstract
Microphotochemistry, i.e. photochemistry in microstructured reactors, is a novel research area of the 21st century. It combines established techniques in organic photochemistry and continuous flow microsystem engineering with advances in light technology.
This research work aimed to develop a novel resource- and energy-efficient approach in synthetic chemistry and to demonstrate that microflow-photochemistry can serve as a
compact, rapid and resource efficient R&D tool.
A series of homogeneous and heterogeneous photoreactions have been studied in microreactors to evaluate the potential of microphotochemistry. A range of acetonesensitized photodecarboxylation reactions involving phthalimides was investigated in commercially available microreactor dwell device and a number of isopropanol
additions to furanones were studied in newly designed within the project LED-driven microchip. All results were compared to analogous experiments in conventional
Rayonet reactor. In all cases examined, the reactions performed in the chosen microreactors gave higher conversions or yields. This finding was explained by the
generated data of light penetration, irradiated surface-to-volume ratio, energy efficiency and space-time yield. The numbers achieved for continuous flow systems were notably
higher compared to the conventional setup. This finding nicely proved superiority of microphotochemistry concept.
Another commercially available device falling film microreactor was successfully adapted for the photooxygenation of -terpinene and new safer methodology have been developed for the synthesis of potentially explosive endoperoxide ascaridole. Major disadvantages of commercially available microreactors are, however, the fixed
length of the reaction channel and the single-channel design. Although numbering-up can be achieved using an array of microreactors, which required significant costs
investment. Flexible PTFE capillaries represent a cost-efficient alternative. Thus a simple continuous microflow dual-capillary reactor and its optimised version multimicrocapillary tower were developed. The tower design enables parallel operation of 10 experiments and it was successfully tested for reaction optimization, library synthesis and scale-up. The multi-capillary design may be easily transferred to other microflow applications such as parallel testing of biologically active compounds, process
modeling, in situ analysis and combinatorial chemistry.
Consequently, micro-photochemistry may serve as a compact, rapid and resource efficient R&D tool and opens new approaches for synthetic chemistry.
Metadata
Item Type: | Thesis (PhD) |
---|---|
Date of Award: | March 2013 |
Refereed: | No |
Supervisor(s): | Nolan, Kieran and Oelgemöller, Michael |
Uncontrolled Keywords: | Microphotochemistry; organic photochemistry |
Subjects: | Physical Sciences > Chemistry |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Science and Health > School of Chemical Sciences |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
Funders: | EPA -STRIVE Programme |
ID Code: | 17558 |
Deposited On: | 05 Apr 2013 13:24 by Kieran Nolan . Last Modified 24 Oct 2013 00:02 |
Documents
Full text available as:
Preview |
PDF (Oksana Shvydkiv PhD thesis 2012)
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
20MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record