Lynch, Michael (2006) Multidimensional image analysis of cardiac function in MRI. PhD thesis, Dublin City University.
Abstract
Cardiac morphology is a key indicator of cardiac health. Important metrics that are currently in clinical use are left-ventricle cardiac ejection fraction, cardiac muscle (myocardium) mass, myocardium thickness and myocardium thickening over the cardiac cycle. Advances in imaging technologies have led to an increase in temporal and spatial resolution. Such an increase in data presents a laborious task for medical practitioners to analyse.
In this thesis, measurement of the cardiac left-ventricle function is achieved by developing novel methods for the automatic segmentation of the left-ventricle blood-pool and the left ventricle myocardium boundaries. A preliminary challenge faced in this task is the removal of noise from Magnetic Resonance Imaging (MRI) data, which is addressed by using advanced data filtering procedures. Two mechanisms for left-ventricle segmentation are employed.
Firstly segmentation of the left ventricle blood-pool for the measurement of ejection fraction is undertaken in the signal intensity domain. Utilising the high discrimination between blood and tissue, a novel methodology based on a statistical partitioning method offers success in localising and segmenting the blood pool of the left ventricle. From this initialisation, the estimation of the outer wall (epi-cardium) of the left ventricle can be achieved using gradient information and prior knowledge.
Secondly, a more involved method for extracting the myocardium of the leftventricle is developed, that can better perform segmentation in higher dimensions. Spatial information is incorporated in the segmentation by employing a gradient-based boundary evolution. A level-set scheme is implemented and a novel formulation for the extraction of the cardiac muscle is introduced. Two surfaces, representing the inner and the outer boundaries of the left-ventricle, are simultaneously evolved using a coupling function and supervised with a probabilistic model of expertly assisted manual segmentations.
Metadata
Item Type: | Thesis (PhD) |
---|---|
Date of Award: | 2006 |
Refereed: | No |
Supervisor(s): | Whelan, Paul F. |
Uncontrolled Keywords: | Cardiology; Heart Function |
Subjects: | Engineering > Electronic engineering Computer Science > Image processing |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
ID Code: | 18021 |
Deposited On: | 29 Apr 2013 13:35 by Celine Campbell . Last Modified 29 Apr 2013 13:35 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
10MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record