Suominen, Hanna, Salanterä, Sanna, Velupillai, Sumithra, Chapman, Wendy, Savova, Guergana, Elhadad, Noemie, Pradhan, Sameer, South, Brett R., Mowery, Danielle L., Jones, Gareth J.F. ORCID: 0000-0003-2923-8365, Leveling, Johannes ORCID: 0000-0003-0603-4191, Kelly, Liadh ORCID: 0000-0003-1131-5238, Martinez, David and Zuccon, Guido (2013) Overview of the ShARe/CLEF eHealth evaluation lab 2013. Information Access Evaluation. Multilinguality, Multimodality, and Visualization, 8138 ( . pp. 212-231. ISSN 0302-9743
Abstract
Discharge summaries and other free-text reports in healthcare transfer information between working shifts and geographic locations. Patients are likely to have difficulties in understanding their content, because of their medical jargon, non-standard abbreviations, and ward-specific idioms. This paper reports on an evaluation lab with an aim to support the continuum of care by developing methods and resources that make clinical reports in English easier to understand for patients, and which helps them in finding information related to their
condition. This ShARe/CLEFeHealth2013 lab offered student mentoring and shared tasks: identification and normalisation of disorders (1a and 1b) and normalisation of abbreviations and acronyms (2) in clinical reports with respect to terminology standards in healthcare as well as information retrieval (3) to address questions patients may have when reading clinical reports. The focus on patients' information needs as opposed to the specialised information needs of physicians and other healthcare workers was the main feature of the lab distinguishing it from previous shared tasks. De-identied clinical reports for the three tasks were from US intensive care and originated from the MIMIC II database. Other text documents for Task 3 were from the Internet and originated from the Khresmoi project. Task 1 annotations originated from the ShARe annotations. For Tasks 2 and 3, new annotations, queries, and relevance
assessments were created. 64, 56, and 55 people registered their interest in Tasks 1, 2, and 3, respectively. 34 unique teams (3 members per team on average) participated with 22, 17, 5, and 9 teams in Tasks 1a, 1b, 2 and 3, respectively. The teams were from Australia, China, France, India, Ireland, Republic of Korea, Spain, UK, and USA. Some teams developed
and used additional annotations, but this strategy contributed to the system performance only in Task 2. The best systems had the F1 score of 0.75 in Task 1a; Accuracies of 0.59 and 0.72 in Tasks 1b and 2; and
Precision at 10 of 0.52 in Task 3. The results demonstrate the substantial community interest and capabilities of these systems in making clinical
reports easier to understand for patients. The organisers have made data and tools available for future research and development.
Metadata
Item Type: | Article (Published) |
---|---|
Refereed: | Yes |
Uncontrolled Keywords: | Medical information retrieval; Evaluation |
Subjects: | Computer Science > Information retrieval |
DCU Faculties and Centres: | Research Institutes and Centres > Centre for Next Generation Localisation (CNGL) DCU Faculties and Schools > Faculty of Engineering and Computing > School of Computing |
Publisher: | Springer Berlin Heidelberg |
Official URL: | http://link.springer.com/chapter/10.1007%2F978-3-6... |
Copyright Information: | © 2013 Springer. The original publication is available at www.springerlink.com |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License |
ID Code: | 20120 |
Deposited On: | 17 Sep 2014 10:38 by Liadh Kelly . Last Modified 25 Oct 2018 09:47 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
235kB |
Metrics
Altmetric Badge
Dimensions Badge
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record