Login (DCU Staff Only)
Login (DCU Staff Only)

DORAS | DCU Research Repository

Explore open access research and scholarly works from DCU

Advanced Search

Stimuli-responsive materials and biomimetic fluidics: key building blocks of futuristic autonomous chem/bio-sensing platforms

Diamond, Dermot orcid logoORCID: 0000-0003-2944-4839, Florea, Larisa orcid logoORCID: 0000-0002-4704-2393, Francis, Wayne, Coleman, Simon and Dunne, Aishling (2015) Stimuli-responsive materials and biomimetic fluidics: key building blocks of futuristic autonomous chem/bio-sensing platforms. In: Invited Seminar, 27 May 2015, Universty of Pisa.

Abstract
Our ability to sense chemistry and biology in challenging scenarios, such as implantable devices for monitoring our health, or the quality of water in rivers and lakes has not advanced significantly since the fundamental breakthroughs in chem/bio-sensors of the 1970’s and 1980’s. It is becoming clear that in order to meet challenging performance specifications in terms of price and performance, these devices will have to be much more sophisticated, and in particular, adopt bio-inspired strategies to deliver platforms that can function autonomously for years. For example, many sensing platforms employ fluidic systems, and increasingly microfluidic systems to integrate functions such as sample transport, reagent addition, filtering, and detection. In the future, these fluidic systems will have a more active role in monitoring, reporting and maintaining the overall functionality of the platform. Like our own blood circulation system, fluidics in chem/bio-sensing devices will contain micro/nano-vessels and in-channel active components (e.g. integrated soft-polymer valves) capable of detecting damage, leaks, fouling, channel blockage etc., and furthermore, undertake appropriate remedial action (detect leak location & perform repairs, open blocked channels or provide alternative fluidic pathway) in order to dramatically extend the functional lifetime of the platform. Access to 3D additive technologies, in combination with directed polymer self-assembly, now enables such soft polymer actuators to be created with nano-scale resolution inside microfluidic channels for fluid control, or to provide channels with switchable characteristics such as surface roughness [1], or controlled uptake and release of molecular guests. In addition, fluidic coatings can optically report their condition (e.g. whether they are in binding or passive form, or molecular guests are bound) reflecting the chemical status along the entire length of the fluidic system, rather than at a localised detector [2]. The same characteristics can be integrated into micro-vehicles such as droplets, beads and vesicles, or microrobots that can also move spontaneously or be externally directed to specific locations, where they can perform these and other tasks [3, 4]. In this lecture, I will present practical examples of these exciting concepts and suggest strategies for their further implementation into functional futuristic devices. References 1. J.E. Stumpel, B. Ziolkowski, L. Florea, D. Diamond, D.J. Broer, A. Schenning, Acs Applied Materials & Interfaces, 6 (2014) 7268-7274. 2. L. Florea, C. Fay, E. Lahiff, T. Phelan, N.E. O'Connor, B. Corcoran, D. Diamond, F. Benito-Lopez, Lab on a Chip, 13 (2013) 1079-1085. 3. L. Florea, K. Wagner, P. Wagner, G. G. Wallace, F. Benito‐Lopez, D. L. Officer, D. Diamond, Adv. Mater. 26, 7339 (2014). 4. W. Francis, C. Fay, L. Florea, D. Diamond, Chem. Commun. 51, 2342 (2015).
Metadata
Item Type:Conference or Workshop Item (Invited Talk)
Event Type:Seminar
Refereed:No
Uncontrolled Keywords:Personal health
Subjects:Physical Sciences > Analytical chemistry
Biological Sciences > Microfluidics
Humanities > Biological Sciences > Microfluidics
Physical Sciences > Chemistry
DCU Faculties and Centres:DCU Faculties and Schools > Faculty of Science and Health > School of Chemical Sciences
Research Institutes and Centres > INSIGHT Centre for Data Analytics
Research Institutes and Centres > National Centre for Sensor Research (NCSR)
Use License:This item is licensed under a Creative Commons Attribution-NonCommercial-Share Alike 3.0 License. View License
Funders:Science Foundation Ireland, European Framework Programme 7, Enterprise Ireland
ID Code:20632
Deposited On:09 Jun 2015 13:50 by Dermot Diamond . Last Modified 17 Sep 2018 09:17
Documents

Full text available as:

[thumbnail of pisa_2015.pdf]
Preview
PDF - Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
5MB
Downloads

Downloads

Downloads per month over past year

Archive Staff Only: edit this record