Sheridan, Paul (2021) Development of high capacity transmission systems for future optical access networks. Master of Engineering thesis, Dublin City University.
Abstract
The cost-sensitivity of NG-PON2 and future optical access networks, employing wavelength division multiplexing (WDM) technology, may preclude the use of conventional LiNbO3-based intensity and I/Q modulators, as they are currently too expensive for use in the access domain. Cost-effective directly modulated lasers (DMLs) and electro-absorption modulated lasers (EMLs) will need to be employed and, thus, are expected to be integral components in the realisation of tunable laser sources for future optical access networks. The limitations of DMLs and EMLs as transmitters merit thorough investigation to further understand how these devices can be adapted or optimised for use as tunable laser sources in future optical access networks.
In this thesis, the transmission performance of a directly modulated DFB laser (DML) and an externally modulated DFB laser monolithically integrated with an EAM (EML), are investigated. The performance of both devices under 12.5 Gbit/s NRZ-OOK modulation are evaluated for transmission over standard single-mode fibre (SSMF) in an IM/DD test-bed, with a view to further understanding the limitations of DMLs and EMLs in 10 Gbit/s IM/DD systems. Particular attention is given to the frequency chirp of the devices and how the chirp affects the performances of the devices for transmission over SSMF up to 50 km in length. Numerical models, which were developed in MATLAB, are utilised to simulate the characteristics and transmission performances of both the DML and EML. The latter half of this thesis is focused on the development of a self-seeded Fabry-Pérot (SS-FP) laser. The SS-FP laser is optimised and characterised, and the transmission performance of the directly modulated SS-FP laser over SSMF is evaluated in an IM/DD test-bed. Two intensity modulation (IM) formats are assessed, 12.5 Gbit/s NRZ-OOK and 12.5 Gbaud/s (25 Gbit/s) multilevel PAM-4, both IM formats are compatible with 10G class optical components and legacy PON deployments. The SS-FP laser holds potential for photonic integration, justifying its consideration as a candidate tunable laser source for next generation PONs and future optical access networks.
Metadata
Item Type: | Thesis (Master of Engineering) |
---|---|
Date of Award: | November 2021 |
Refereed: | No |
Supervisor(s): | Barry, Liam |
Subjects: | Engineering > Optical communication Engineering > Telecommunication Engineering > Electronic engineering Physical Sciences > Lasers Physical Sciences > Optoelectronics Physical Sciences > Photonics |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Engineering and Computing > School of Electronic Engineering |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
Funders: | Science Foundation Ireland |
ID Code: | 26212 |
Deposited On: | 27 Oct 2021 16:21 by Liam Barry . Last Modified 27 Oct 2021 16:21 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
15MB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record