Wu, Huizhong (2009) On the pathwise large deviations of stochatic differential and functional differential equations with applications to finance. PhD thesis, Dublin City University.
Abstract
The thesis deals with the asymptotic behaviour of highly nonlinear stochastic differential equations, as well as linear and nonlinear functional differential equations. Both ordinary functional and neutral equations are analysed. In the first chapter, a class of nonlinear
stochastic differential equations which satisfy the Law of the Iterated Logarithm is studied, and the results applied to a �financial market model. Mainly scalar equations are
considered in the �first chapter. The second chapter deals with a more general class of finite-dimensional nonlinear SDEs and SFDEs, employing comparison and time change
methods, as well as martingale inequalities, to determine the almost sure rate of growth of the running maximum of functionals of the solution. The third chapter examines the
exact almost sure rate of growth of the large deviations for affine stochastic functional differential equations, and for equations with additive noise which are subject to relatively weak nonlinearities at infinity. The fourth chapter extends conventional conditons for existence
and uniqueness of neutral functional differential equations to the stochastic case. The �final chapter deals with large fluctuations of stochastic neutral functional differential equations.
Metadata
Item Type: | Thesis (PhD) |
---|---|
Date of Award: | November 2009 |
Refereed: | No |
Supervisor(s): | Appleby, John |
Subjects: | Business > Finance Mathematics > Differential equations Mathematics |
DCU Faculties and Centres: | DCU Faculties and Schools > Faculty of Science and Health > School of Mathematical Sciences |
Use License: | This item is licensed under a Creative Commons Attribution-NonCommercial-No Derivative Works 3.0 License. View License |
Funders: | Science Foundation Ireland, School of Mathematical Sciences, DCU |
ID Code: | 14870 |
Deposited On: | 12 Nov 2009 16:25 by John Appleby . Last Modified 19 Jul 2018 14:48 |
Documents
Full text available as:
Preview |
PDF
- Requires a PDF viewer such as GSview, Xpdf or Adobe Acrobat Reader
805kB |
Downloads
Downloads
Downloads per month over past year
Archive Staff Only: edit this record